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Abstract

We present a new approach to studying equilibrium dynamics in a class

of stochastic games with a continuum of players with private types and

strategic complementarities. We introduce a suitable equilibrium concept,

called Markov Stationary Nash Distributional Equilibrium (MSNDE), prove

its existence, and determine comparative statics of equilibrium paths and

the steady state invariant distributions to which they converge. Finally,

we provide numerous applications of our results including: dynamic models

of growth with status concerns, social distance, and paternalistic bequests

with endogenous preferences for consumption.
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1 Introduction

This paper presents a constructive method for characterizing and approximating

Markovian equilibria in a class of dynamic games with a continuum of players

and strategic complementarities. Each player is endowed with a private type

that evolves stochastically over time. The type may be interpreted as the agent’s

endowment, social rank, payoff-relevant private information, behavioral traits,

etc., depending on the economic application at hand. An equilibrium is defined as

a probability distribution over types and actions of all players in the initial period,

and a law of motion/belief regarding future distributions of types and actions in

the population. Our approach allows for a unified study of both equilibrium

transition paths and equilibrium comparative dynamics from any initial state of

the game, as well as associated long-run stochastic steady states (i.e., invariant

distributions) to which these equilibrium paths converge.

Large dynamic games with private information find numerous applications in

diverse fields in economics, including models of equilibrium growth with hetero-

geneous agents and endogenous social structure (Cole et al., 1992), inequality

with endogenous preference formation (Genicot and Ray, 2017), industry dynam-

ics with heterogeneous firms (Weintraub et al., 2008), dynamic network forma-

tion (Mele, 2017; Xu, 2018), economics of identity and social dissonance (Akerlof

and Kranton, 2000; Bisin et al., 2011), models of endogenous formation of social

norms (Acemoglu and Jackson, 2017), macroeconomic models with public or pri-

vate sunspots (Angeletos and Lian, 2016), or models of wealth distribution in the

presence of incomplete markets (Cao, 2020).1 The principal objective of these pa-

pers is to provide sufficient conditions for existence, characterization, computation,

calibration, and estimation of dynamic equilibria. However, the existing tools are

1 See also Acemoglu and Jensen (2015, 2018) for a discussion on the relation between large

dynamic economies and large anonymous games.

2



typically applicable only to the study of stochastic steady-state equilibria defied in

terms of invariant distributions. In contrast, we provide a systematic method for

studying global equilibrium distribution transitional paths that converge to the

stochastic steady-states.

The theoretical literature on equilibrium dynamics in games is quite limited,

even in the context of games with finitely many players.2 This is because charac-

terizing the dynamics of sequential or Markovian equilibria becomes analytically

intractable as the number of players grows and the state space becomes large and

complex. Additionally, due to heterogeneity of private types, determining how

players update their beliefs both ’on’ and ’off’ equilibrium paths is non-trivial.

Even providing sufficient conditions for existence of sequential equilibria is chal-

lenging, let alone providing methods for approximating and characterizing the

evolution of types an actions over time.

Due to these complications, the literature has focused on equilibrium concepts

that simplify dynamic interactions. Two dominant methodological approaches

have been proposed in the existing literature. One exploits aggregative structures

in games and restricts players’ interactions to a statistic or an aggregate that

summarizes the population distribution, joint with some notion of a stochastic

steady-state equilibrium. The other (often used in conjunction with aggregation

and restriction to steady-states) simplifies equilibrium interactions by imposing

behavioral assumptions on how agents make their decisions. This includes the

recent work on oblivious equilibria (Lasry and Lions, 2007, Achdou et al., 2014,

Bertucci et al., 2019, Light and Weintraub, 2021, Achdou et al., 2021), mean-field

equilibria (Weintraub et al., 2008, Adlakha et al., 2015, and Ifrach and Weintraub,

2016), or imagined-continuum equilibria (Kalai and Shmaya, 2018), among oth-

ers.3 We argue that such simplifications are not critical or necessary in games

2 From a theoretical perspective, little is known about the nature of convergence of equi-

librium transitional dynamics to stochastic steady-states. This question is complicated by the

presence of equilibrium multiplicities and stability issues related to equilibrium transitional

paths, thus, making the counterfactuals from these models difficult to implement and interpret.
3 See also Krusell and Smith (1998) where agents know only the moments of the random

measure determining the distribution of idiosyncratic shocks and assets. See also Doncel et al.

(2016); Kwok (2019); Lacker (2020); Nutz (2018).
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with strategic complementarities.

Our results This paper tackles the above theoretical and computational ques-

tions within a unified methodological framework of large anonymous stochastic

games with strategic complementarities4 and no aggregate risk.5 Exploiting the

nature of games with infinitely many agents, where individuals have negligible

impact on actions of others, and in the context of games with strategic comple-

mentarities, we provide sufficient conditions for existence of a Markov stationary

Nash distributional equilibrium (henceforth MSNDE). Our solution concept con-

sists of a probability measure over types and actions in the population of players

and a law of motion that determines the equilibrium evolution of such distribu-

tions. MSNDE is defined over a minimal set of state variables6 and resembles the

notion of recursive competitive equilibrium that is extensively used in macroeco-

nomics. Our equilibrium concept is therefore inherently dynamic and enables us

to characterize and compare equilibrium transition paths. Notably, the results

hold without the need of restricting our analysis to an aggregative structure. In

fact, in our economic applications, players’ payoffs critically depend on the entire

distribution of types and actions in the population.7

Limiting our attention to games with strategic complementarities is indispens-

able for our results. First of all, it allows us to formulate the evolution of (dis-

tributional) equilibrium beliefs in a tractable way. Second, we develop a new

order-theoretic approach to characterize the order structure of (Markovian) Nash

distributional equilibria. This enables us to prove existence of a greatest and a

least MSNDE (with respect to a well-defined stochastic order). Third, by an-

alyzing a measure space of agents, we avoid the technical difficulties that can

4 See Topkis (1978), Vives (1990), Milgrom and Roberts (1990), Veinott (1992) and Milgrom

and Shannon (1994) for early contributions and motivations for studying games with strategic

complementarities. See also van Zandt and Vives (2007) and Van Zandt (2010) for Bayesian

games with strategic complementarities and finitely many players.
5 See Jovanovic and Rosenthal (1988), Bergin and Bernhardt (1992); Karatzas et al. (1994).
6 By the minimal state space, we mean a domain that includes only the current individual

type and the distribution of types in the population.
7 Equilibrium distributions are also important in econometric evaluations of heterogeneous

agent models in macroeconomics. See, e.g., Parra-Alvarez et al. (2017) and Auclert et al. (2021).
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emerge in extensive-form supermodular games with a finite number of players and

private information.8 Finally, our approach delivers novel results in construct-

ing global equilibrium comparative statics/dynamics that apply to monotone dy-

namic economies. This way, we extend the recent results on comparative statics

of stochastic steady-state equilibria as in Acemoglu and Jensen (2015) and Light

and Weintraub (2021).

We organize the paper as follows. In the remainder of this section, we present

a motivating example to discuss the main issues that we tackle in our results. In

Section 2 we present the main model and prove equilibrium existence. The results

on monotone comparative statics/dynamics are discussed in Section 3. We present

economic applications of our results in Section 4. Proofs, auxiliary results, and a

glossary of mathematical terminology are postponed until the appendix.

A motivating example Consider a growth model in which individuals are con-

cerned with their relative social status. The society consists of a continuum of

players. Each time period n ∈ {1, 2, . . .}, a typical player is endowed with a (pri-

vate) wealth/capital level t ∈ T = [0, 1] that constitutes their type. This wealth

can be transformed into consumption c ∈ [0, 1] or investment a ∈ A = [0, 1] using

a one-to-one technology, thus, introducing the constraint t = c + a. By invest-

ing a ∈ [0, t], the agent influences their wealth t′ in the following period via a

stochastic technology q. Whenever a units of wealth is being invested, the cu-

mulative probability of attaining the capital t′ is q(t′|a). We assume that higher

investments make higher wealth more likely, i.e., the distribution q(·|a) increases

in a in the sense of first-order stochastic dominance. Finally, we assume that the

realization of the future capital t′ is independent across players. The discount

factor, common to all players, is denoted by β ∈ (0, 1).

The status of each agent is determined by both their current consumption c and

wealth t. In each period, every individual interacts randomly with one other mem-

ber of the society. If an agent with capital t consuming c encounters an individual

of wealth t̃ consuming c̃, the former receives U(c, c̃, t, t̃) = m(t− t̃) + w(c− c̃),
8 See Echenique (2004), Vives (2009), and Mensch (2020) for a related discussion.
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where the functions m and w are continuous, strictly increasing, and concave.

Thus, interacting with individuals with lower wealth and consumption is prefer-

able due to, say, the feeling of superiority.

At the beginning of each period, before any interaction with other members of

society takes place, the individual determines their consumption c and investment

a. In order to do so, they first evaluate their beliefs about the current distribution

µ over capital-investments pairs (t̃, ã) in the population, where ã = t̃ − c̃. Given

a belief µ, their expected payoff in this particular period is given by:

r(t, a, µ) =

∫
A×T

[
m(t− t̃) + w(t− a− t̃+ ã)

]
µ(dã× dt̃).

Of particular importance is to notice that the payoffs of each player depends

on the entire distribution of type-actions in the population. Thus, this game is

inherently non-aggregative. Indeed, evaluating payoffs in each period requires the

entire distribution µ of capital (types) and investments (actions) in the population.

Simply replacing the measure µ with a summary statistic is not enough to define

the payoffs.

We are interested in studying the dynamic distributional equilibrium of this

game. More generally, we investigate how the distributions of types and actions

in the population evolve and interact when (a) the evolution of types and actions

is determined by strategies of individuals and the stochastic transition q over

private types, and (b) individuals form beliefs over future types and actions in the

population consistent with the law of motion governing the distribution of private

types (i.e., capital levels), given the joint strategy of all players.

Studying equilibria in games with infinitesimal players has one important ad-

vantage. Since individual players have a negligible impact on the distribution of

types and actions in the population, each one of them faces a standard Markov

decision problem (henceforth, MDP), conditional on the distributions of future

types {τn} and types-actions {µn}. Only private types are drawn (independently)

each period and fluctuate according to probability distribution q.

Importantly, the problem of each player admits a recursive formulation. To

see that, suppose the players share a macro belief Φ, i.e., a transition function for
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capital-investment distributions between periods, where µn+1 = Φ(µn). Together

with an initial distribution µ1, this allows players to conjecture a candidate equi-

librium path of the game and formulate their sequential problem recursively, with

the value function v∗ satisfying

v∗(t, µ; Φ) = max
a∈[0,t]

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ(µ); Φ

)
q(dt′|a)

}
.

An MSNDE consists of a measure µ∗ over type-actions in the population in

the initial period and a macro belief transition Φ∗ such that, when treating those

as given, almost every player solves their MDP and the resulting distribution over

types and actions coincides with µ∗. In particular, the marginal distribution of µ∗

over types (wealth/capital) must be equal to the exogenously given initial distri-

bution τ1. Moreover, the perceived macro belief Φ∗, under rational expectations,

is consistent with the actual transition q and the initial distribution. In particu-

lar, under the exact law of large numbers, one can associate probabilities q with

distributions over types in T .

In addition, any equilibrium pair (µ∗,Φ∗) generates a sequence of equilibrium

measures {µ∗n}, where µ∗1 = µ∗ and µ∗n+1 = Φ∗(µ∗n). MSNDE is stationary in the

sense that the corresponding equilibrium strategies of players and their beliefs are

independent of time. However, our concept is inherently dynamic and allows us

to evaluate and compare the entire equilibrium paths of types and actions.

Our motivating example is a game with dynamic strategic complementarities.

In this game, it is optimal for every individual to increase their own wealth and

consumption as the distribution of wealth and consumption in the population

increases stochastically. More importantly, such complementarities are present

within and across periods. In particular, anticipating (stochastically) higher dis-

tributions of capital tomorrow provides incentives for players to increase their own

investment today at the expense of the current consumption. Whether a game

exhibits such complementarities depends critically on two reinforcing conditions:

(i) increasing differences between the private type (capital) and anticipated pop-

ulation distribution in the following period, and (ii) agents forming monotone

beliefs, i.e., expecting higher population distribution tomorrow when faced with a
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higher distribution today.9 This example has both features. This is in contrast to

the complementarities that arise in stochastic steady-state or stationary equilibria,

which are essentially static by definition.

Finally, we can characterize the comparative statics/dynamics of equilibrium

paths. We show how changes in parameters of the game (e.g., discount factor,

preference or technology parameters, the initial distribution τ1 of types) affect

paths of equilibrium distributions {µ∗n} (implied by equilibrium µ∗ and Φ∗), as

well as the steady states to which they converge. Since the measure µ∗n is defined

over the space of types and actions, it is crucial to provide novel equilibrium com-

parative statics result for spaces of multidimensional distributions, that extend

the existing comparative statics results in a non-trivial fashion.

2 Large stochastic games with complementarities

In this section we formally define the model and our notion of equilibrium. A

glossary of basic mathematical definitions is provided in the appendix.

Consider a stochastic game in discrete time with an infinite horizon. Let

(Λ,L, λ) be a probability space of players. It is critical to our analysis that this

space is super-atomless. This formalization is necessary to show that the agents

can form their beliefs about types of other players by exploiting the exact law of

large numbers.10 To fix ideas, one intuitive example of such a space is the product

measure space over [0, 1]I , where each factor is endowed with Lebesgue measure

and I is uncountable.

In each period n ∈ {1, 2, . . .} a player is endowed with a private type t ∈ T ⊆ Rp,

where T is compact and T denotes its Borel σ-algebra. Let A ⊆ Rk be a compact

space of all conceivable actions endowed with the Borel σ-algebra A. We endow T

and A with the natural product partial order ≥.11 Finally, letM be a set of prob-

ability measures on T ⊗A, andMT be the set of probability measures on T , where

9 Hence, our work is related to recent work on characterizing single crossing in distributions

(e.g., Quah and Strulovici, 2012 and Kartik et al., 2019).
10 See the appendix for a formal definition and a comprehensive discussion on this notion.
11 For any x, y ∈ R`, we say that x ≥ y if xi ≥ yi, for all i = 1, . . . , `.
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both spaces are ranked with the corresponding first order stochastic dominance

order and endowed with the topology of weak convergence of measures.12

Given a distribution τ of types of all (other) players, a player of type t chooses

an action a ∈ Ã(t, τ) ⊆ A, where Ã : T × MT ⇒ A is the feasible action

correspondence. The player’s within-period payoff is determined by a bounded

function r : T × A×M→ R that takes values r(t, a, µ), given a private type t,

an action a, and a probability measure µ over types and actions of all players.

In this paper, we investigate dynamic games in which private types of play-

ers are determined stochastically in each period. The transition probability is

represented by a function q : T × A×M→MT that assigns a probability mea-

sure q(·|t, a, µ) over private types in the following period to their current type t,

action a, and the measure µ of types-actions in the population.

2.1 Players’ decision problem

In order to define the sequential decision problem for each player, we need to spec-

ify how the individual is forming beliefs about future types of other players in the

game, based on the current distribution of types and strategies in the population.

We begin with some basic assumptions on the primitives of the game.13

Assumption 1. For all τ ∈MT and µ ∈M:

(i) The correspondence t⇒ Ã(t, τ) is measurable and compact-valued.

(ii) The function (a, t)→ q(·|t, a, µ) is Borel-measurable.

Given that the measure space of players is super-atomless, Assumption 1 guar-

antees the (endogenous) transition of private types satisfies a no aggregate uncer-

tainty condition in each period (hence, it evolves deterministically).14 Formally,

given the current distribution µ of types and actions in the population, the future

12 See Remark A.1 in the appendix for a discussion regarding the relationship between order

topology and weak convergence of measures.
13 A glossary containing basic mathematical terminology, including the details regarding the

dynamic ELLN in the immediate sequel, is provided in the appendix.
14 Bergin and Bernhardt (1992, 1995) discuss the importance of this construction.
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measure of players with private types in a measurable set S is

φ(µ)(S) :=

∫
T×A

q(S|t, a, µ)µ(dt× da). (1)

Therefore, it is determined by the current distribution µ and the transition q. This

no aggregate uncertainty condition for a super-atomless probability space of play-

ers follows from results in Sun (2006) and Podczeck (2010). Such an appropriate

exact law of large numbers (ELLN) simplifies our analysis of large random popu-

lations by (i) allowing for independent draws of types for a continuum of players;

(ii) simplifying the dynamics of the aggregate law of motion of distributions over

types-actions in the population; and (iii) allowing each agent to form beliefs us-

ing the law of large numbers, rather than updating their beliefs on (the product

of) types of other players. By ELLN and universality of rich Fubini extension

as in Sun (2006), we show the no-aggregate-uncertainty assumption holds in our

setting. See Section A.1.2 in the appendix for details.

Given the formulation of beliefs, we define the decision problem of a player in

a candidate Markov stationary Nash distributional equilibrium. Let H∞ be the

set of all histories
{

(tn, an, τn)
}
n∈N, where an ∈ Ã(tn, τn). Let Hn be the set of

histories up to time n: that is, Hn :=
{

(tj, aj, τj)
n
j=1 : aj ∈ Ã(tj, τj)

}
. A strategy

is a sequence of functions (σn)n∈N such that σn : Hn−1 × T ×MT → A is Borel-

measurable in (t1, t2, . . . , tn) ∈ T n and σn(hn−1, tn, τn) ∈ Ã(tn, τn), where H0 = ∅

and the initial values of t1, τ1 are given. A strategy (σn)n∈N is Markov if in each

period n, we have, σn : T ×MT → A, i.e., the action depends only on the current

type t ∈ T and the current distribution of types τ ∈ MT . Hence, it is history-

independent. A Markov strategy is stationary if it is time-invariant, i.e., we have

σn = σn′ , for any time periods n, n′.

Given an initial private type t, a public distribution of types τ , and a Markov

strategy σ′ of other players, a Markov strategy σ induces the unique private mea-

sure P σ,σ′

t,τ on histories of the game. The sequential objective of a player is

R
(
t, (σ, σ′), τ

)
:= (1−β)Eσ,σ

′

t,τ

[
r(t, σ1(t, τ), µ

σ′1
1 ) +

∞∑
n=2

βn−1r
(
tn, σn(tn, τn), µσ

′
n
n

)]
,

(2)
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where β ∈ (0, 1) is a discount factor, Eσ,σ
′

t,τ is the expectation induced by P σ,σ′

t,τ ,

and µ
σ′n
n = τn

(
idT , σ

′
n(·, τn)

)−1
,15 where idT denotes the identity function over T .

We impose the following assumptions.16

Assumption 2 (Payoffs). The function r is (i) continuous in (t, a), (ii) monotone

sup- and inf-preserving in µ, (iii) increasing in t, (iv) supermodular in a; and

(v) has increasing differences in
(
a, (t, µ)

)
and (t, µ).

Assumption 3 (Transition probability). The transition kernel q(·|t, a, µ) is (i) con-

tinuous in (t, a), (ii) monotone sup- and inf-preserving in µ, (iii) stochastically

increasing in (t, a, µ), (iv) stochastically supermodular in a, and (v) has stochas-

tically increasing differences in
(
a, (t, µ)

)
and (t, µ).

Assumption 4 (Feasible actions). The correspondence Ã : T×MT ⇒ A is (i) con-

tinuous; (ii) its values are compact sublattices of A; (iii) it is increasing with t in

the sense of set inclusion; (iv) increasing with t in the strong set order; and (v) it

satisfies strict complementarities.

Most of these assumptions are standard in dynamic games with complemen-

tarities (see Curtat, 1996 and Balbus et al., 2014) with the exception of some

monotonicity requirements on payoffs and the transition function. As shown later

in the paper, these are indispensable to preserve strategic complementarities across

periods in the extensive formulation of the game under Markovian strategies. Im-

portantly, our framework encompasses many of the important linear social inter-

action models studied in the econometric literature by Blume et al. (2015); Kline

and Tamer (2020) and Kwok (2019).17

An example of a transition function q satisfying Assumption 3 is

q(·|t, a, µ) := g(t, a, µ)ρ(·) +
(
1− g(t, a, µ)

)
ν(·),

15 We employ the standard notation where, for any measure ν, function f , and a measurable

set S, we have νf−1(S) = ν
(
{s ∈ S : f(s) ∈ S}

)
.

16 We present the mathematical terminology in the appendix.
17 For example, the payoff function studied in Kwok (2019) satisfies our assumptions (see

equation (1) in their paper). Our constructive monotone comparative statics/dynamics results

presented in the following section may be useful in developing and characterizing estimators to

test equilibrium distributions in empirical models. See, e.g., Echenique and Komunjer (2009,

2013), DePaula (2013), and Uetake and Watanabe (2013).
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where g(t, a, µ) is supermodular in a; has increasing differences in
(
a, (t, µ)

)
and

(t, µ); and is increasing in (a, t, µ); while ρ, ν are probability distributions over T

such that ρ first order stochastically dominates ν. This class of transitions was

introduced in Curtat (1996) and Amir (2002), and has been successfully applied

in the related literature.18

Remark 1. Assumption 3 implies that, in general, the transition cannot be de-

terministic. Indeed, supermodularity and increasing differences of the integrand∫
f(t′)q(dt′|t, a, µ) must hold for any integrable and monotone function f , which

is generally not satisfied for deterministic transitions.19 However, if A ⊆ R (an

important special case in the applied literature) then, for any continuous and in-

creasing function g : A→ T , the deterministic transition given by q(S|t, a, µ) = 1,

if g(a) ∈ S, and q(S|t, a, µ) = 0 otherwise, satisfies our assumption.

Remark 2. Whenever the action space A is one-dimensional and the transition

function q depends only on action a, our results remain true even if the payoff

function r is not increasing in t and the correspondence Ã is not increasing in t

in the set inclusion order. This follows directly from our constructive argument

in Section 2.3 and will become clear in the remainder of the paper.

An important feature of our framework is that the sequential problem in (2)

admits a recursive representation. Let Φ : M → M determine the next pe-

riod distribution Φ(µ) over types and actions in the population, given the cur-

rent distribution µ. By (1), the marginal of Φ(µ) over types in T is φ(µ)(S) =∫
T×A q(S|t, a, µ)µ(dt × da), for any measurable set S. Denote µT := margT (µ),

where margT (µ) returns a marginal of µ on T . In the remainder of this sec-

tion, we show that for any initial distribution µ and any function Φ, the value

18 For example, see Balbus et al. (2013) for a discussion on the nature of these assumptions.
19 Indeed, the (deterministic) transition q(S|t, a, µ) = 1 if g(t, a, µ) ∈ S, and q(S|t, a, µ) = 0

otherwise, does not satisfy our assumption, even when g is increasing in all variables, super-

modular in a, and has increasing differences in
(
a, (t, µ)

)
and (t, µ). It is so, even when such

a deterministic transition is extended by, e.g., an i.d.d., multiplicative noise π over Z. In such

case, the function
∫
T
f(t′′|t, a, µ) =

∫
Z
f
(
z′g(t, a, µ)

)
π(dz′) does not have increasing differences

between (a, t), unless f is convex.
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corresponding to the problem (2) satisfies

v∗(t, µ; Φ) = max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ(µ); Φ

)
q(dt′|t, a, µ)

}
.20

(3)

Given the initial distribution µ and the perceived law of motion Φ, the player’s

problem is a MDP with uncertainty about the future private signal t only. Thus,

under the exact law of large numbers, the sequence of aggregate distributions

{µn}n∈N is deterministic. Using standard arguments, we show that the best re-

sponse correspondence of each player is Markovian on the natural state space of

current types t and measures µ. However, our definition of equilibrium requires

consistency between such a policy and the perceived law of motion Φ. Since Φ

specifies beliefs of players on continuation paths of the game, we write v∗(t, µ; Φ)

to stress that the value function and the corresponding policy depend on the

beliefs.21

2.2 Markov stationary Nash distributional equilibria

We now define the notion of equilibrium we use in this paper.

Definition 1 (Markov Stationary Nash Distributional Equilibrium). A pair (µ∗,Φ∗)

with µ∗ ∈ M and Φ∗ : M → M is a Markov Stationary Nash Distribution

Equilibrium (MSNDE) whenever:

(i) there is a function v∗ such that, for any µ ∈M and almost every t ∈ T ,

v∗(t, µ; Φ∗) = max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ∗(µ); Φ∗

)
q(dt′|t, a, µ)

}
;

(ii) there is a measurable selection σµ,Φ∗ of the correspondence Σµ,Φ∗ : T ⇒ A:

Σµ,Φ∗(t) := arg max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v∗
(
t′,Φ∗(µ); Φ∗

)
q(dt′|t, a, µ)

}
,

µ∗ = µ∗T
(
idT , σµ∗,Φ∗

)−1
and Φ∗(µ) = φ(µ)

(
idT , σΦ∗(µ),Φ∗

)−1
, for any µ ∈M.

20 Equivalently, one may use t, τ as state variables and construct µ by composing τ and a

strategy σ : T → A. In such a case, the strategy σ would have to be included as an additional

parameter of the value function.
21 Compare with the equilibrium in Kalai and Shmaya (2018) for large but finite repeated

games.
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An MSNDE consists of an initial distribution µ∗ on types and actions, a

Markov transition function Φ∗, and it involves an equilibrium policy σµ,Φ∗ : T → A.

MSNDE is stationary in the sense that equilibrium strategies and beliefs of all

players are time-invariant. Nevertheless, the continuation payoff v∗
(
·,Φ∗(µ∗); Φ∗

)
implies a dynamic interaction of each player with the future distributions of types

and actions in the population, through the equilibrium law of motion Φ∗.

Condition (i) is a standard Bellman equation characterizing players’ best re-

ply correspondences. The second part of the definition imposes a two-fold con-

sistency. First of all, µ∗ = µ∗T (idT , σµ∗,Φ∗)
−1 guarantees that the distribution of

actions is generated by the equilibrium strategy σµ∗,Φ∗ , given the initial distri-

bution of types and the equilibrium law of motion. In addition, we require that

Φ∗(µ) = φ(µ)(idT , σΦ∗(µ),Φ∗)
−1. Thus the perceived macro belief and the actual

law of motion for aggregate distributions (i.e., generated by the best-response se-

lection σΦ∗(µ),Φ∗) must coincide.22 The Markov transition Φ∗ specifies common

beliefs each player uses to determine future paths of equilibrium distributions.

In macroeconomic literature on recursive equilibria, such beliefs are often called

rational. Since Φ∗(µ) = φ(µ)(idT , σΦ∗(µ),Φ∗)
−1, for any µ ∈ M, the function Φ∗

specifies beliefs ’on’ and ’off’ equilibrium paths.

To state our main result, we introduce one final piece of notation. Let

D :=
{

Φ :M→M : Φ is increasing and monotone

inf-preserving and margT
(
Φ(µ)

)
= φ(µ), for any µ ∈M

}
. (4)

Therefore, we restrict our attention to functions/beliefs Φ that are increasing and

monotone inf-preserving. We endow D with the pointwise order, i.e., function Φ′

dominates Φ if the probability measure Φ′(µ) first order stochastically dominates

Φ′(µ), for all µ ∈M. We endow D with the topology of pointwise convergence.

Remark 3. Dually, let D′ :=
{

Φ : M → M : Φ is increasing and monotone

sup-preserving and margT
(
Φ(µ)

)
= φ(µ), for any µ ∈ M

}
. To save space, we

focus on D, but all constructions and results have their counterpart in D′.
22 Since we work with no aggregate uncertainty, we do not require that Φ∗ is measurable.
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Consider the main result of this paper.

Theorem 1. Let Assumptions 1–4 be satisfied. Then, any large stochastic game

with complementarities has a Markov Stationary Nash Distributional Equilibrium

(MSNDE). In particular, there exists a greatest MSNDE of the game in M×D

and a least MSNDE of the game in M×D′.

We postpone the proof until Section 2.3. The above theorem requires some

comment. First, apart from providing sufficient conditions for existence of an

MSNDE, Theorem 1 guarantees existence of a monotone MSNDE, consisting of

monotone beliefs Φ∗ and monotone strategies σµ,Φ∗ . Moreover, the space of all

MSNDE in M × D admits a greatest element. Similarly, there exists a least

MSNDE in the spaceM×D′. Finally, if the set of maximizers to the optimization

problem on the right hand-side in (3) is unique, then the set of MSNDE is chain

complete, i.e., closed under monotone sequences of equilibria in M×{D ∩ D′}.

Remark 4. Any MSNDE induces a sequential distributional equilibrium as in Jo-

vanovic and Rosenthal (1988), i.e., {µ∗n}n∈N, where µ∗1 = µ∗ and µ∗n = Φ∗(µ∗n−1).

In fact, such sequential distributional equilibrium can be constructed for any ini-

tial distribution τ1 of types of all players. Indeed, it is clear from Definition 1

that µ∗ can be constructed using any distribution on types τ1 and a stationary

equilibrium policy σ∗.23

A natural question is whether there is an invariant distribution induced by

MSNDE that would give rise to a stochastic stationary equilibrium — a fixed

point of a global distributional equilibrium dynamics generated by an MSNDE.

Proposition 1 (Invariant distributions). Under assumptions 1–4, there exists a

stochastic stationary equilibrium. In particular, there exists a greatest invariant

distribution ν̄ induced by the greatest MSNDE (µ̄∗,Φ
∗
), i.e., ν̄ = Φ

∗
(ν̄) and a least

invariant distribution ν induced by the least MSNDE (µ∗,Φ∗).

We omit the proof. The existence of invariant distributions is guaranteed by

monotonicity of Φ and Φ, and the fact that the space of measures M is a chain

23 See also our construction in equations (6) and (7).
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complete poset.24 By Proposition A.1 in the appendix, both operators admit a

greatest and a least fixed point (invariant distribution), and these extremal fixed

points can be obtained through successive iterations on the mappings Φ
∗

and

Φ∗, respectively. Additionally, for any MSNDE (µ∗,Φ∗), the pair
(
Φ∗(µ∗), Φ∗

)
is

also an MSNDE. In fact, the pair (ν,Φ∗) is a MSNDE as well, for any invariant

distribution ν generated by Φ∗.25

We prove Theorem 1 in the following subsection. It is important to point

out that our argument is constructive and based upon order continuous succes-

sive approximation techniques. In particular, we introduce an explicit iterative

algorithm that approximates the greatest equilibrium of the game. To present

our construction, we require additional notation. For any µ ∈ M, Φ ∈ D, and

function v, let

Γ(t, µ,Φ; v) := arg max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ)

}
,

(5)

i.e., the set of maximizers of the player’s MDP. Define a greatest element of the

set by γ(t, µ,Φ; v), if it exists. Let ? be a binary operation between τ ∈ MT and

the set of measurable functions h : T → A returning probability measure on T×A

τ ? h := τ(idT , h)−1. (6)

Define the operator Ψ mapping M×D into itself, where Ψ(µ,Φ) = (µ′,Φ′) and

µ′ := µT ? γ(·, µ,Φ; v∗) and Φ′(µ) := φ(ν) ? γ
(
·,Φ(µ),Φ; v∗

)
, (7)

for all µ ∈M, where v∗ : T ×M×D → R is a function solving (3).

Proposition 2 (Bounds approximation). Let µ̄ and Φ be the greatest elements of

M and D, respectively. Under Assumptions 1–4, limn→∞Ψ
n
(µ̄,Φ) = (µ∗,Φ

∗
),

where (µ∗,Φ
∗
) is the greatest MSNDE.

An analogous approximation result holds for the least MSNDE. Our results

contribute to several strands of economics literature. First, we extend the results

24 See, e.g., Lemma 2 in Balbus et al. (2019).
25 However, it must be that ν̄ is dominated by µ̄∗.
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on existence of equilibria in large anonymous sequential games that date back

to Jovanovic and Rosenthal (1988), Bergin and Bernhardt (1992), and Karatzas

et al. (1994). In particular, we prove existence of minimal state space station-

ary Markovian distributional Nash equilibrium within the subclass of games that

(in addition) possess strategic complementarities. Second, we extend the class

of games with strategic complementarities (GSC) to a dynamic setting with a

measure space of players. Following Van Zandt (2010) and van Zandt and Vives

(2007), a few recent papers generalized the class of supermodular games and GSC

to normal-form games with complete and incomplete information. See, e.g., Bal-

bus et al. (2015b), Balbus et al. (2015a, 2019), and Bilancini and Boncinelli (2016),

who construct the necessary tools for a study of large static games with strate-

gic complementarities. We extend these results to Markovian equilibria in large

dynamic games.

The tools used in our paper extend significantly the ones in Balbus et al.

(2013, 2014), where the question under study is the existence and characteriza-

tion of Markovian equilibria in dynamic games with a finite number of players.

Specifically, within the context of a large game framework, the current paper re-

laxes some strong geometrical assumptions on the (aggregate) transition function

q required in stochastic supermodular games with a finite number of players.26

Indeed, the context of a large game allows us to avoid multiple issues related to

extensive-form supermodular games as discussed, e.g., in Amir (2002), Echenique

(2004), Vives (2009), and Mensch (2020). Our assumptions guarantee that the

stationary value functions in each player’s decision problem has increasing dif-

ferences in the private type and the distribution over types and actions in the

population. With this structure in place, our large stochastic supermodular game

remains extensive-form supermodular over the infinite horizon. This is critical for

equilibrium comparative statics/dynamics. Given the distributional specification

of the game, we are able to avoid issues with characterizing dynamic complemen-

tarities in actions across periods and beliefs, reported recently in Mensch (2020)

26 See Assumption 1 in Balbus et al. (2013) and Assumption 2 in Balbus et al. (2014) which

are necessary to guarantee that equilibrium dynamics do not lead to an absorbing state.
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for dynamic Bayesian games with a finite number of players. Finally, as in Balbus

et al. (2014), the existence of the extremal MSNDEs is proven constructively, by

applying successive approximations starting from the greatest (respectively, the

lowest) strategies. In this sense, we provide the applied researchers with tools that

allow to approximate sequences of equilibrium distributions.

2.3 Construction of equilibria

We devote this subsection to the proof of Theorem 1. We present our argument

via a number of lemmas, each of which may be of individual interest. We prove

existence of a greatest MSNDE only. The argument for a least MSNDE is analo-

gous.

Let Assumptions 1–4 be satisfied. We begin by showing that the problem in

(2) admits a recursive representation. In particular, for any Markov transition

function Φ ∈ D, there is a unique function v satisfying (3). Let V be the space

of functions v : T ×M × D 7→ R such that: (i) v is uniformly bounded by a

value r̄ > 0, (ii) v(·, µ,Φ) is increasing and continuous, for any (µ,Φ) ∈ M×D,

(iii) v(t, ·, ·) is monotone inf-preserving, for any t ∈ T , and (iv) v has increasing

differences in
(
t, (µ,Φ)

)
. We endow V with the sup-norm topology || · ||∞.27

Lemma 1. V is a complete metric space.

Given that V is a subset of all bounded functions, it is a subset of a Banach

space. Hence, it suffices to show that the set is closed. Since continuity, mono-

tonicity, and increasing differences are preserved in the sup-norm convergence,

the main difficulty is to show that any limit of monotone inf-preserving functions

preserves this property. We prove this in the appendix.

The next lemma provides an important feature of Markov transition func-

tions Φ. It follows immediately from Lemma A.2 in the appendix.

Lemma 2. Let {µk}k∈N be a decreasing sequence in M that weakly converges to µ

inM. Let {Φk}k∈N be a decreasing sequence in D that pointwise weakly converges

to some Φ in D. Then,
{

Φk(µk)
}
k∈N weakly converges to Φ(µ).

27 That is, we have ||v||∞ := sup(t,µ,Φ)∈T×M×D |v(t, µ; Φ)|.
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Define an operator B : V → V as

(Bv)(t, µ,Φ) := max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ)

}
.

(8)

Some basic properties of the operator B are provided below.

Lemma 3. For any v ∈ V, function (Bv) is continuous and increasing in t, jointly

monotone inf-preserving in (µ,Φ), and has increasing differences in
(
t, (µ,Φ)

)
.

Denote the function within the brackets in (8) by

F (t, a, µ; v,Φ) := (1− β)r(t, a, µ) + β

∫
T

v
(
t′,Φ(µ),Φ

)
q(dt′|t, a, µ). (9)

Given Assumptions 2–4, F (t, a, µ; v,Φ) is increasing in t, jointly continuous in

(t, a), and has increasing differences in
(
a, (t, µ,Φ)

)
and

(
t, (µ,Φ)

)
. We claim

it is monotone inf-preserving in (µ,Φ). Suppose that
{

(µn,Φn)
}
k∈N is a de-

creasing sequence that converges to (µ,Φ). By Lemma 2, we have Φn(µn) →

Φ(µ). By Assumption 2 and the choice of the set V , it must be that both

r(t, a, µk) → r(t, a, µ) and v
(
t,Φk(µk), µk

)
→ v

(
t,Φ(µ), µ

)
. Moreover, we have∫

T
v
(
t′,Φk(µk), µk

)
q(dt′|t, a, µk)→

∫
T
v
(
t′,Φ(µ), µ

)
q(dt′|t, a, µ), which follows from

Lemma A.3 in the appendix. Hence, F is inf-preserving. We are ready to prove

Lemma 3.

Proof of Lemma 3. Continuity of (Bv) follows from Berge’s Maximum Theorem

(see Theorem 17.31 in Aliprantis and Border, 2006). Monotonicity of (Bv) in t

is implied by monotonicity of F and the fact that Ã increases in t with respect

to set inclusion. To show that it is monotone inf-preserving in (µ,Φ), take any

decreasing sequence
{

(µk,Φk)
}
k∈N that converges to some (µ,Φ). We know that

F (t, ak, µk; v,Φk) → F (t, a, µ; v,Φ) whenever ak → a. By Lemma A.4 in the

appendix, this suffices for (Bv)(t, µk,Φk) → (Bv)(t, µ,Φ). Finally, we show that

(Bv) has increasing differences in
(
t, (µ,Φ)

)
, for any v ∈ V . Equivalently, we

claim that w(t, µ; v,Φ) = maxa∈Ã(t,µT ) F (t, a, µ; v,Φ) has increasing differences in(
t, (µ,Φ)

)
, for any v. By Assumptions 2 and 3 the function F (t, a, µ; v,Φ) is

supermodular in a, has increasing differences in
(
a, (t, µ,Φ)

)
and in

(
t, (µ,Φ)

)
.
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The rest follows from Lemma A.1 in the appendix that generalizes Lemma 1 in

Hopenhayn and Prescott (1992).

Proposition 3. The operator B : V → V has a unique fixed point in V.

Indeed, Lemma 3 guarantees that B is a well-defined operator that maps a

complete metric space V into itself (recall Lemma 1 and 3). Therefore, it suffices

to show that B is a contraction mapping on V . This fact follows from Blackwell’s

sufficient conditions for contraction and can be shown using an argument analo-

gous to the one supporting Theorem 3.3 in Stokey et al. (1989).28 Since the metric

space V (with the sup-norm) is complete, B has a unique fixed point. Finally,

showing that the value coincides with the value of the original problem (2) can be

done using standard arguments.29

Given that the value function has increasing differences in both arguments

(t, µ) and the transition Φ∗ is monotone, we can guarantee that the current actions

of players and their beliefs regarding the future distribution of types and actions

in the population are complements. As a result, we are able to show existence

of equilibrium by applying constructive order-theoretic tools (rather than purely

topological constructions), and this allows us to unify our existence results with

our subsequent equilibrium comparative dynamics results.

We proceed with the second half of the argument where we prove existence of

a greatest MSNDE. Recall the definition of the correspondence Γ from (5), with

its greatest selection γ : T ×M×D → A. Consider the following lemma.

Lemma 4. For any v ∈ V, the greatest selection γ is a well-defined function,

measurable in t, increasing in (t, µ,Φ), and monotone inf-preserving.

Proof. For any v ∈ V , we have Γ(t, µ; v,Φ) = arg maxa∈Ã(t,µT ) F (t, a, µ; v,Φ). It is

straightforward to verify that F is supermodular and continuous in a. Since the

set Ã(t, µT ) is a complete sublattice of A, by Corollary 4.1 in Topkis (1978), the

set Γ(t, µ; v,Φ) is a complete sublattice of A. Therefore, it admits both a greatest

28 Indeed, if v′ pointwise dominates v, then Bv′ pointwise dominates Bv. Moreover, for any

v ∈ V and constant a ≥ 0, we have
[
B(v + a)

]
(t, µ; Φ) ≤ (Bv)((t, µ; Φ) + βa.

29 See, for example, Theorem 9.2 in Stokey et al. (1989).
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and a least element. We show that γ is measurable in the appendix. Monotonicity

follows from increasing differences of F and Theorem 6.2 in Topkis (1978).30 To

show that γ is monotone inf-preserving, let
{

(µk,Φk)
}
k∈N be a decreasing sequence

converging to (µ,Φ). By the previous argument, sequence
{
γ(t, µk,Φk; v)

}
k∈N is

decreasing. Suppose it converges to some γ and, thus, γ(t, µk,Φk; v) ≥ γ, for all

k ∈ N. Since F is continuous and monotone inf-preserving, Lemma A.4 in the

appendix guarantees that γ ∈ Γ(t, µ; v,Φ). Thus, it must be that γ ≤ γ(t, µ,Φ; v),

and so γ ≤ γ(t, µ,Φ; v) ≤ γ(t, µk,Φk; v).

For the following lemma, recall the definition of the binary operation ? in (6).

Lemma 5. For any measures τ, τ ′ ∈MT such that τ ′ first order stochastically dom-

inates τ , and any increasing functions h, h′ : T × A → A such that h′ dominates

h pointwise, the measure (τ ′ ? h′) first order stochastically dominates (τ ? h).

The proof of the above lemma is straightforward, hence, we omit it.

Lemma 6. Let {τk}k∈N be a decreasing sequence in MT converging to some τ ,

and let {hk}k∈N be a (pointwise) decreasing sequence converging to some h, where

hk : T × A → A are increasing and monotone inf-preserving functions. Then

(τk ? hk)→ (τ ? h) in the sense of weak convergence.

Proof. This follows from Lemma A.2 in the appendix.31 We only need to show

that τ ? h is inf-preserving in h. Take an arbitrary τ ∈ MT and let hk be a

decreasing sequence of Borel functions mapping T to A. Let h = limk→∞ hk.

Then, for any measurable, continuous, and bounded function f : T × A→ R,

lim
k→∞

∫
T×A

f(t, a)(τ ? hk)(dt× da) = lim
k→∞

∫
T

f
(
t, hk(t)

)
τ(dt)

=

∫
T

f
(
t, h(t)

)
τ(dt) =

∫
T×A

f(t, a)(τ ? h)(dt× da).

Hence, (τ ? hk)→ (τ ? h) weakly. This completes the proof.

30 See the glossary in the appendix.
31 Here the role of Ξ plays MT , and the role of fk plays h 7→ (τk ? h).
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Take the unique function v∗ that solves the equation (3). Define operator Ψ

as in (7). Given monotonicity of γ(t, µ,Φ; v) and Lemma 5, we conclude that it

is increasing. Moreover, by Lemmas 4 and 6, it is also monotone inf-preserving.

Before completing the proof of Theorem 1, we require one more ancillary result.

Lemma 7. The set D is a lower chain complete poset.

Proof. Let {Φj}j∈J be a chain in D and Φ :=
∧
j∈J Φj. It suffices to show that Φ

is monotone inf-preserving. Let {µk}k∈N be a decreasing sequence inM that con-

verges to µ. For any k, j, and an increasing, measurable function f : T × A→ R,∫
T×A

f(t, a)(Φµ)(dt×da) ≤
∫
T×A

f(t, a)(Φµk)(dt×da) ≤
∫
T×A

f(t, a)(Φjµk)(dt×da).

As k →∞, we obtain∫
T×A

f(t, a)(Φµ)(dt× da) ≤ lim inf
k→∞

∫
T×A

f(t, a)(Φµk)(dt× da)

≤ lim sup
k→∞

∫
T×A

f(t, a)(Φµk)(dt× da) =

∫
T×A

f(t, a)(Φjµ)(dt× da).

We conclude by taking the infimum with respect to j on the right hand-side.

We proceed with the proof of Theorem 1.

Proof of Theorem 1. It suffices to show that there is a greatest fixed point of Ψ de-

fined in (7). Note that Ψ is monotone in (µ,Φ). Indeed, by Lemma 4, γ(t, µ,Φ; v∗)

is jointly increasing in (t, µ,Φ). By Lemma 6, this implies monotonicity of µ′ in

(7). By the same argument Φ′ in (7) is increasing in µ and Φ. Moreover, by

Lemmas 4 and 6, we conclude that Ψ is a monotone inf-preserving self-map on

M× D. By applying Proposition A.1 in the appendix, we conclude that there

exists a greatest MSNDE.32

3 Monotone equilibrium comparative dynamics

Here, we discuss the nature of constructive monotone equilibrium comparative

dynamics (see, e.g., Huggett, 2003) in the class of games studied in Section 2. To

32Whenever the best response γ is single valued it can be shown using Theorem 9 in Markowsky

(1976) that the fixed point set of Ψ = Ψ is a chain complete poset.
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do this, we parameterize primitives of our game with a parameter θ, that belongs

to a poset (Θ,≥Θ), and seek conditions under which MSNDEs are ordered with

respect to θ. Given our definition of equilibrium, this means that the selection

θ → µ∗θ and the equilibrium law of motion θ → Φ∗θ are increasing in the following

sense: if θ′ ≥Θ θ then µ∗θ′ stochastically dominates µ∗θ, and the measure Φ∗θ′(µ)

stochastically dominates Φ∗θ(µ), for all measures µ ∈M. Since our notion of equi-

librium is inherently dynamic, we use the term monotone comparative dynamics

rather than comparative statics. We define a positive shock.33

Assumption 5 (Positive shock). Let Θ be a poset. (i) The payoff function r(t, a, µ; θ)

has increasing differences in (a, θ) and (t, θ); (ii) the transition kernel q(·|t, a, µ; θ)

is increasing in θ and has increasing differences in (a, θ) and (t, θ); (iii) the feasible

action correspondence Ã(t, µ; θ) has strict complementarities in (t, θ).

Theorem 2 (Monotone Comparative Distributional Dynamics). Suppose that the

parameterized mappings r(·, θ), q(·; θ), and Ã(·; θ) satisfy Assumptions 1–4, for all

θ ∈ Θ. Under Assumption 5, both the greatest equilibrium
(
µ̄∗θ,Φ

∗
θ

)
and the least

equilibrium
(
µ∗
θ
,Φ∗θ
)

is increasing in θ.

Proof. We prove the case for the greatest equilibrium only. The proof for the

lowest equilibrium is analogous. Let Ψθ be the counterpart of the operator Ψ in

the parameterized game with θ ∈ Θ. Similarly, we define φθ, Φθ, and γθ, mutatis

mutandis. Given that q(·|t, a, µ; θ) is increasing in θ, it suffices to show that

θ → γθ is increasing. Under our assumptions, the objective (1− β)r(t, a, µ, θ) +

β
∫
T
v∗(t′,Φθ(µ),Φθ, θ)q(dt

′|t, a, µ, θ) has increasing differences in (a, θ), and the

function v∗
(
t′,Φθ(µ),Φθ, θ

)
has increasing differences in (t, θ), for any µ ∈ M

(recall Lemma A.1 in the appendix and the argument in the second part of the

proof to Lemma 3). By Theorem 6.2 in Topkis (1978) (see the glossary in the

appendix), we conclude that γθ is increasing in θ. By Assumption 5, we know

33 Our notion of a positive shock is consistent with the terminology of Acemoglu and Jensen

(2015). However, we consider comparative equilibrium transitional dynamics. In this sense, our

question is closely related to the issues studied in Huggett (1997). Recall, in Huggett (1997),

monotone aggregate dynamics are only available from initial distributions below the stochastic

steady state. Here, our MSNDE dynamics are globally monotone.
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that θ → φθ is increasing. By Lemma 5, the same property is inherited by Ψθ,

i.e., for θ′ ≥ θ, Ψθ′(µ,Φ) = (µθ′ ,Φθ′) pointwise dominates Ψθ′(µ,Φ) = (µθ,Φθ).

Equivalently, µθ′ first order stochastically dominates µθ and the measure Φθ′(µ)

first order stochastically dominates Φθ(µ), for all µ ∈ M. As in the proof of

Theorem 1, Ψθ is an increasing operator, for any fixed θ. To complete the proof

we apply Proposition A.2, recalling that the poset of distributions and the poset

of uniformly bounded functions are chain complete.

An immediate corollary follows: Under Assumptions 1–4, the greatest equilib-

rium increases in the initial distribution of types τ1.34 Indeed, if we let θ = τ1 and

Θ =MT is ordered in the stochastic sense, then Assumption 5 holds.

Our monotone comparative dynamics results both improve upon and comple-

ment the results in the existing literature, including those found in Adlakha and

Johari (2013), Acemoglu and Jensen (2010, 2015), Light and Weintraub (2021).

These papers discuss comparative statics of stochastic steady state equilibria or

mean-field equilibria, rather than MSNDE. In particular, they focus on (a) the

set of equilibrium invariant and/or steady state distributions, and (b) games with

an aggregative structure. In contrast, we provide conditions under which (ex-

tremal) MSNDE equilibrium transition paths exist and are increasing globally in

the deep parameters. In our case, as the equilibrium distribution µ∗θ and the law

of motion/belief Φ∗θ increase in θ, so does the distribution Φ∗θ
(
µ∗θ
)

in the following

period, and so on.35 Therefore, the entire equilibrium path shifts with respect to

the parameter θ. Further, as these equilibrium paths converge to a steady state,

a greatest invariant distribution ν̄θ induced by the greatest equilibrium is also

increasing in θ.36

It bears mentioning that the assumptions in Acemoglu and Jensen (2015,

2018), and Light and Weintraub (2021) are not sufficient for an analogous mono-

tone comparative dynamics result. The key difference between these works and

34 Analogous comparative dynamics apply to the least MSNDE.
35 This complements the approach to transitional dynamics in Huggett (1997).
36 A similar argument applies to the least equilibrium global distributional dynamic path and

the least invariant distribution (or the least steady-state).
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ours is that, when studying comparative statics of a steady-state equilibrium (or

mean-field equilibrium), one does not investigate dynamic complementarities be-

tween current actions and future distributions of types and actions in the pop-

ulation. This is because stochastic steady-state equilibria are inherently static,

unlike our dynamic notion of MSNDE. For this reason, we require extra assump-

tions to guarantee that the equilibrium dynamics of the economy under study

are sufficiently monotone. These assumptions are not vacuous, as the literature

includes many examples of dynamic economies that do not satisfy our conditions.

Indeed, the standard Bewley-Huggett-Aiyagari models of wealth distribution with

infinitely lived agents and the presence of incomplete markets are, in general, not

monotone in the sense specified here. We address this in Section 4.6.

Our results apply to distributions over the multidimensional space Rn. In fact,

the multidimensionality is inherent if one studies distributions over types and ac-

tions (as in our motivating example). Since spaces of measures over multidimen-

sional spaces are not lattices, we employ the alternative tool from Proposition A.2

in the appendix, as the well-known Tarski’s fixed point theorem does not apply.37

Finally, our monotone comparative statics/dynamics results are constructive.

We characterize the chain of parameterized equilibria converging to the one of

interest, for a particular parameter θ. This is of utmost importance for applied

economists who calibrate moments of equilibrium invariant distributions, or econo-

metrically estimate equilibrium comparative statics/dynamics in the data (e.g.,

with quantile methods in Echenique and Komunjer, 2009, 2013).38

4 Applications and examples

Here, we discuss some economic applications of our results.

37 See also the discussion in Section 3 of Light and Weintraub (2021).
38 See Cao et al. (2020) for a discussion regarding numerical methods related to the global

dynamic equilibrium models such as ours.
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4.1 Motivating example revisited

Recall the motivating example from the Introduction. In each period, the type of

a player is determined by their level of capital/wealth t ∈ T = [0, 1]. Their actions

(investments) a ∈ A = [0, 1] are chosen from the feasible set Ã(t, τ) = [0, t]. Given

the distribution µ of types-actions of all players, the payoff in a single period is

r(t, a, τ, θ) :=

∫
A×T

[
θm(t− t̃) + w(t− a− t̃+ ã)

]
µ(dã× dt̃).

Here we introduce a positive parameter θ with respect to the initial example.

Given an investment a, the cumulative probability distribution of the capital

level t′ in the following period is q(t′|a). Thus, conditional on the macro belief Φ,

the Bellman equation determining the player’s value function is

v(t, µ; Φ) = max
a∈Ã(t,µT )

{
(1− β)r(t, a, µ, θ) + β

∫
v
(
t′,Φ(µ); Φ

)
q(dt′|a)

}
.

This game satisfies Assumptions 1–4. Indeed, correspondence Ã is measurable,

continuous, compact-valued, increasing in t, and satisfies strong complementari-

ties. Given that the functions m and w are continuous, increasing, and concave,

the function r is continuous over T × A, increasing over T , and has increasing

differences in
(
a, (t, µ)

)
and (t, µ). The function is also (trivially) supermodular

in a, and continuous in µ. As long as the distribution q is continuous in a, the

requirements of Theorem

1 for existence of a greatest MSNDE are satisfied.

As it was pointed out in Section 2, the equilibrium pair (µ∗,Φ∗) generates the

entire equilibrium path of distributions {µ∗n}, where µ∗1 = µ∗ and µn+1 = Φ∗(µn),

which allows us to track the dynamics of the model. Moreover, the sequence

converges to an invariant distribution, allowing for the study of steady states.

Apart from existence and approximation of equilibria, Theorem 2 allows us to

say more about its equilibrium comparative dynamics. In particular, the equilib-

rium (µ∗,Φ∗) and the corresponding sequence {µ∗n} increase as the initial distri-

bution of types τ1 increases in the first order stochastic sense. That is, along an

equilibrium path that converges to a steady state, players invest more and have
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higher capital levels (stochastically). In addition, the equilibrium changes mono-

tonically with respect to the parameter θ. One can easily verify that the return

function r has increasing differences in (a, θ) and (t, θ). As the correspondence Ã

and transition kernel q are independent of θ, this suffices for the equilibrium path

to be increasing in θ. Thus, the higher the weight of the wealth-driven status, the

higher (stochastically) are the investments in the population.

These results hold for a more transition q(·|t, a, µ), that depends on the invest-

ment of each player, their type, and the distribution of wealth-investments in the

population. However, this requires Assumption 3 to hold.

4.2 Dynamics of social distance

Next, we analyze a dynamic model of social distance based on Akerlof (1997).39

Consider a measure space of agents. Let T = [0, 1] be the set of all possible social

positions in the population. Each period an individual is characterized by an

identity t ∈ T (private type), which determines the social position to which the

agent aspires. Each period the agent chooses their own social position (action)

a ∈ A := [0, 1]. The set of social positions feasible to the agent with identity t is

Ã(t, τ) :=
[
a(t), a(t)

]
, where functions a, a : T → A are increasing functions and

satisfy a(t) ≤ t ≤ a(t), for all t ∈ T . Thus, limiting social mobility.

When choosing social position, there is a trade-off between idealism and con-

formism. On one hand, the individual wants the social status a to be as close to

their identity t as possible. Specifically, given some continuous, decreasing, and

concave function m : [0, 1] → R, the agent wants to maximize m
(
|a − t|

)
, that

captures idealism. On the other hand, the player experiences discomfort when

interacting with agents that have different social position from theirs. Whenever

an agent of a social position a encounters an agent of a social position a′, they each

receive utility w
(
|a− a′|

)
, for some continuous, decreasing, and concave function

39 The model is related to multiple strands of the social economics literature, including models

of identity and economic choice as in Akerlof and Kranton (2000), or models with endogenous

social reference points, including Bernheim (1994), Brock and Durlauf (2001), Bisin et al. (2011),

and Blume et al. (2015). This example extends the static model in Balbus et al. (2019).
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w : [0, 1]→ R. This summarizes conformism.

Suppose that ν(t′|t) is a cumulative probability distribution determining the

likelihood of an agent with identity t meeting someone with identity t′. We assume

it is continuous and first-order stochastically increasing in t. It captures the idea

that similar minds think alike and players with similar identity are more likely

to meet. Given the distribution of types-actions µ, the within-period payoff of an

agent of an identity t and a social position a is

r(t, a, µ) := m(|a− t|) +

∫
T

∫
A

w(|a− a′|)µA(da′|t′)ν(dt′|t),

where µA(·|t′) is the distribution of actions of other players in the population,

conditional on t′. Therefore, payoff of an agent in a single period is the sum of their

idealistic utility and expected payoff to conformity relative to their interactions

with other agents. Our specification implies that the social position can not be

contingent on the social statuses of other agents. It is chosen before any interaction

occurs, highlighting the tension between idealism and conformism.

Following the rule you become whom you pretend to be, we assume that the

social position in a current period has a direct impact on the identity in the

following period. Formally, the transition is governed by cumulative probability

distribution q(t′|a) that determines the likelihood of the agent acquiring identity

t′ in the next period following their choice of a at the current date. We assume

that function a→ q(·|a) is continuous and stochastically increasing in a.

The above game admits a greatest (and a least) MSNDE. Indeed, function r

satisfies conditions (i), (ii) and (iv), (v) from Assumption 2. Moreover, since the

transition kernel q depends only on a, it satisfies Assumption 3. Finally, as long

as functions a, a are continuous, in addition to the previously stated assumptions,

correspondence Ã(t, τ) =
[
a(t), a(t)

]
is continuous, compact-valued, and satisfies

strong complementarity. Finally, Assumption 1 holds as well.

Apart from equilibrium existence, one can determine equilibrium comparative

transitional dynamics in the model. It is clear that, as the initial distribution of

identities τ1 shifts in the first order stochastic sense, the equilibrium pair (µ∗,Φ∗)

and the entire equilibrium transition path {µ∗n} increase.
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It is crucial that the transition function q depends only on action a. Following

Remark 2, this allows us to dispense of the assumption that the function r and

the correspondence Ã are increasing in t, which is critical for this application.

4.3 Parenting and endogenous dynastic preferences

We can apply our tools to dynamic games with short-lived agents, where individu-

als make decisions in one period only, but their actions propel dynamics for future

generations. This example is inspired by the literature on paternalistic bequests,

keeping-up-with-the-Joneses, and growth with endogenous preferences.40

Consider a society populated with a measure space of single-parent single-child

families. Each individual (a parent) lives for a single period and a parent-child

sequence forms a dynasty. The type of a parent is determined by their lifetime

income y ∈ [0, 1] and a parameter i ∈ [0, 1] that summarizes preferences of the

individual toward consumption, in a way that will be explained shortly. Therefore,

in this setting, the types t = (y, i) belong to T = [0, 1]2.

Each period, the income can be devoted to consumption c and investment

(savings) s, thus, imposing the constraint y = c+s for each dynasty. Consumption

yields immediate utility u(c, g), where the parameter g represents propensity to

consume. We assume that the function u is continuous and concave in c, and has

increasing differences in (c, g). That is, the marginal utility of consumption for

the current generation increases with g. Below, we specify how the variable g is

related to the preference for consumption determined by the type i.

We assume paternalistic preferences, i.e., the parent evaluates the well-being

of their child with a function w(t′, τ ′), where t′ = (y′, i′) is the the future type of

the child, and τ ′ is a distribution of types in the next period. We assume that

w is increasing in t = (y, i), thus, the parent values high income and preference

for consumption of the child. Since the parent cares only about their immediate

descendant, they want the child to consume as much as possible. Moreover, let w

have increasing differences in (t′, τ ′), i.e., the higher is the future distribution of

40 See Cole et al. (1992), Doepke and Zilibotti (2017), and Genicot and Ray (2017).
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types, the higher is the parent’s incremental benefit of the child’s type.

Each parent devotes (e.g., educational) effort e ∈ E = [0, 1] to shape prefer-

ences of their child (i.e., raise their aspiration level). The cost of effort is given

by C(e, µE), where µE denotes the distribution of efforts in the population. We

assume that the cost function is continuous and increasing with e, and has de-

creasing differences in (e, µE) — the higher effort in the entire population, the

easier it is for an individual to influence their child.

Given our description, the action of an individual is a = (s, e) ∈ A := [0, 1]2.

Savings s and effort e affect both the future income and preferences of the child.

Let the cumulative distribution q(t′|a) determine the probability of the future

type of the child being t′ = (y′, i′), where q is stochastically increasing in both

arguments and is stochastically supermodular in a = (s, e). Thus, investment

s and effort e are complements. Indeed, from the parent’s perspective, higher

effort (that skews preference of the child towards consumption) makes marginal

investment/bequest more valuable. The more future income of the child is devoted

to consumption, the more it pleases the paternalistic parent.

Finally, the marginal propensity to consume g is generated endogenously for

each individual via keeping-up-with-the-Joneses effect. Formally, let g = θΓ(t, µC),

for some positive parameter θ and an increasing function Γ that depends both on

the type t = (y, i) of the player and the distribution µC over the current consump-

tion levels in the population. For example,

Γ(t, µC) := inf
{
c ∈ [0, 1] : i ≤ µC(c′′ ≤ c

)}
, (10)

where t = (y, i). That is, Γ is the i’th quantile of consumption in the population.41

Given our description, the objective of a parent of type t = (y, i) is to maximize

u
(
y − s, θΓ(t, µC)

)
+

∫
[0,1]

w
(
t′,ΦT (µ)

)
q(dt′|s, e)− C(e, µE),

with respect to (s, e) ∈ Ã(t, τ) = [0, y] × [0, 1]. Here, the mapping ΦT (µ) is the

projected next-period distribution of types in the population. Notice that w is not

41 This model is broadly related to Echenique and Komunjer (2009) and Doepke et al. (2019)

concerning endogenous transmission of preferences in dynastic models of a household. Our model

with quantile aspiration preferences and paternalism could be extended to altruistic dynastic

choice, peer effects, or locational concerns as in Agostinelli et al. (2020).
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a value function as discussed in Section 2; rather, it is a paternalistic evaluation

of the child’s welfare that may be misaligned with preferences of the child.

To verify whether assumptions of our theorems are satisfied, consider an in-

creasing Markov strategy: σ : T → A, with σs and σe being its projections

on both coordinates. Then, we have µC(Z) = τ
(
{t ∈ T : [y − σs(t)] ∈ Z}

)
,

µE(Z) = τ
(
{t : σe(t) ∈ Z}

)
, and ΦT (µ)(Z) =

∫
T
q
(
Z|σs(t), σe(t)

)
τ(dt), for some

measurable set Z. Pointwise higher strategies σ imply a first order stochastic

dominance increase of µE and ΦT (µ), but a first order stochastic dominance de-

crease in µC .42 Increasing differences of u(c, g), w(t′, τ ′), and −C(e, µE), together

with assumptions on q suffice to show that it is optimal to play a strategy that is

increasing in their private type. This suffices to show that there exist a greatest

MSNDE (µ∗,Φ∗), which can be approximated using successive iterations.

When considering ordered changes in the deep parameters of the model, we

can apply our equilibrium comparative transitional dynamics and equilibrium ap-

proximation to these types of models. In particular, one can show the greatest

(and the least) MSNDE is decreasing with respect to the parameter θ. These

observations are true even though the payoff function is not necessarily increasing

in t, nor it has increasing differences in (t, µ). In fact, whenever function Γ is

specified as in (10), the latter does not hold. Since the additional assumptions

are required to show the particular properties of the value function in the infinite

horizon problem, they play no role in dynamic games with short-lived agents.

4.4 Dynamic contests with coordination failures and learning

Consider a prototypical coordination game based on Angeletos and Lian (2016),

with applications to beauty contests, bank runs, riot games, or currency attacks.43

Here, we focus on a simple dynamic beauty contest. In this large dynamic game,

each player receives a private signal t and chooses an action a every period. Action

42 Indeed,
∫
C
f(c)µ′C(dc) =

∫
T
f
(
y − σ′s(t)

)
τ(dt) ≤

∫
T
f
(
y − σs(t)

)
τ(dt) =

∫
C
f(c)µC(dc), for

any measurable and increasing function f : [0, 1]→ R, where σ′s pointwise dominates σs.
43 See Morris and Shin (2002) for an extensive discussion of this literature. See also Carmona

et al. (2017) for an application of mean-field methods to a related class of games.
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is costly and the cost depends on the type t, which is summarized in the utility

function u(t, a), where u is increasing in t and has increasing differences in (t, a).

In addition, the player’s payoff depends on actions taken by other players, say∫
A
g(a, ã)µA(dã), where the function g has increasing differences in (a, ã).

As is standard in global games and dynamic coordination games with comple-

mentarities, we focus on monotone equilibria in which players use an increasing

strategy σ : T → A. The one-period payoff of an agent playing a is

r(t, a, µ) := u(t, a) +

∫
T

g
(
a, σ(t̃)

)
µT (dt̃),

Such payoff satisfies assumptions required by Theorem 1, and so there exists a

greatest MSNDE, where each player is using an increasing strategy σ.44

The framework can be applied to dynamic riot games with private types, where

r(t, a, µ) := a

[∫
S

(t1 + L)1{R(µ)≥s̃}ν(ds̃)− L
]
− c(a, t2),

for some player type by t = (t1, t2) and a compact interval S ⊆ R. Thus, taking

the risky action a = 1 allows the player to win t1 if a sufficient number R(µ) :=

µ
(
{(t, a) : a = 1}

)
of players takes a risky (and costly) action, or lose L otherwise.

The strength s of the police is distributed according to some measure ν. Whenever

the cost function is decreasing in t2 and c(0, t2) = 0 (due to normalization), the

dynamic game can be solved for a general transition functions q(·|t, a, µ), thus,

allowing to model inertia, habit formation, or dynamic social externalities. See

also Morris and Yildiz (2019) applications.

4.5 Idiosyncratic risk under multidimensional production exter-

nalities and technological dynamics

Our model can be applied to analyze dynamics of technological progress in large

economies where agents face uninsurable private productivity risk. This includes

the model of Romer (1986) in a Bewley-Huggett-Aiyagari type setting with ex-ante

identical agents and ex-post heterogeneity in production and no borrowing.45

44 We may dispense monotonicity of u with respect to t as long as the transition function q

depends only on the one-dimensional action a.
45 See also Angeletos and Calvet (2005) for a related study.
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The economy is populated with a measure space of producers, each endowed

with capital t ∈ T = [0, 1], one unit of time, and a private technology f . The tech-

nology transforms private inputs into finished outputs. Moreover, its productivity

depends on economy-wide externality summarized by the distribution of capital

and labor in the economy. Specifically, each agent with t units of capital and

expending l ∈ L = [0, 1] units of time is able to produce y = f(t, l, µT×L) units of

the finished output, where µT×L is the distribution of capital-labor levels in the

population. We assume that the production function f is continuous and increas-

ing with respect to all arguments, and has increasing differences in (t, l), (t, µ),

and (l, µ).46 In particular, the private technologies endowed to each agent need

not be convex. In addition, our reduced form of technology allows for nontriv-

ial interactions with market leaders, closely related companies, or a competitive

fringe in both capital and labor dimensions.

The output can be devoted to consumption c or investment i, hence, c+ i = y.

When c units of the output are consumed and labor supply is l, the agent receives

utility U(c, l) = u(c) + v(1 − l), where u, v : R → R are smooth, concave and

strictly increasing. Whenever i ∈ I := [0, 1] units of the good is invested, the

capital in the next period is determined stochastically with q(·|i).47

To preserve the complementarity structure to the value functions, we require

some known complementarity conditions for joint monotone controls (see Hopen-

hayn and Prescott, 1992 and Mirman et al., 2008). Along those lines, we as-

sume the standard condition −u′′/u′ ≤ f ′′12/(f
′
1f
′
2). It requires that degree of

complementarity between private capital and labor is high relatively to the cur-

vature of the utility function. This suffices for payoffs to have increasing differ-

ences in (t, l). To guarantee increasing differences in (t, µT×L), we require that

u′
(
f(t, l, µT×L) − c

)
f ′1(t, l, µT×L) is increasing in µT×L.48 Analogous conditions

46 For example, function f(t, l, µT×L) :=
∫
T×L g(t, l, t̃, l̃)µT×L(dt̃ × dl̃) would satisfy such

conditions as long as g is supermodular in all arguments jointly.
47 Our methods allow to analyze two sector economies. A consumption good sector with

technology f and investment good sector with stochastic technology q(·|t, i, l, µT×L). In the

example we consider a simple version of q depending on investment i only.
48 Whenever the externality can be summarized with some increasing aggregate G(µT×L) ∈ R,

where y = f
(
t, l, G(µT×L)

)
, the condition can be reduced to −u′′/u′ ≤ f ′′13/(f

′
1f
′
3).
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guarantee increasing differences in (l, µT×L).49

The above conditions are sufficient for Theorem 1 to hold. Therefore, there

exist extremal MSNDEs for this large dynamic non-market economy (interpreted

as a large anonymous game). Moreover, the extremal equilibria can be approx-

imated using iterative methods. This example highlights the difference between

our results and those in the existing literature. Specifically, we consider Markov

stationary transitional dynamics and comparative dynamics results (in addition

to comparative statics of the steady-state). For example, Acemoglu and Jensen

(2015) discuss stochastic steady-state equilibria and the corresponding compar-

ative statics given single dimensional aggregates that summarize production ex-

ternalities.50 Our conditions on the primitives, that guarantee that each player’s

value function has increasing differences in (t, µ), are not crucial for their results.

4.6 OLG Bewley models

As assumed in Assumption 2 and pointed out in the discussion, our main result

requires that the within-period payoff function r has increasing differences in the

private type t and the measure µ. This condition implies that the value function v

corresponding to the decision problem of each player has increasing differences in

(t, µ) and, as a result, the equilibrium transition function Φ∗ is increasing over its

domain. Unfortunately, in general, the typical infinite horizon Bewley-Huggett-

Aiyagari models violate this assumption.

For example, let the private type of each consumer in the economy be given

by t = (k, `), where k is the capital/asset endowment and ` is a random labor

productivity draw. Each period, the agent can consume c or invest (save) a ≥ 0

49 Notice that, in our setting, the correspondence A(t, l, µT×L) =
[
0, f(t, l, µT×L)

]
×L does not

have strict complementarities. To assure that the value function v∗ in (3) preserves increasing

differences in (t, µ) we need to use constructions of Mirman et al. (2008) (Lemmas 11, 12 and

Theorems 3, 4). They state assumptions on u, v, and f under which the value function has

increasing differences in (t, µ). This example is useful to compare our results with the results

of Acemoglu and Jensen (2015). We require increasing differences between controls and the

aggregate distribution of assets to obtain the comparative statics of the extremal MSNDEs.
50Acemoglu and Jensen (2015) identify positive shocks for a steady-state equilibrium. To

preserve increasing differences between individual states and shock parameters more assumptions

are needed than those listed in their Lemma 1.
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in the future capital, subject to the budget constraint c + a = ρ(K)k + w(K)`,

where ρ(K) and w(K) denote the interest rate and the wage, respectively, that

depend on the aggregate level of capital K =
∫
k µK(dk), where µK is the marginal

distribution over private capital levels in the population. The within period utility

of an individual is then given by

r(t, a, µ) = u
(
ρ(K)k + w(K)− a`

)
,

for some concave utility u. Whenever the price ρ(K) is a decreasing function, the

payoff r does not have increasing differences in (t, µ), since u
(
ρ(K)k+w(K)`−a

)
need not have increasing differences in

(
(k, `), K

)
. Thus, we can not assure that

the value function corresponding to the dynamic problem has increasing differences

in the investment a and the mean future capital K ′. As a result, the equilibrium

operator Φ∗ need not be monotone and our results do not apply.

However, our methods can be applied to a version of the Diamond OLG model

with idiosyncratic risk.51 Suppose that each period there is a measure space of

representative young born, each endowed with a unit of free time and a (private)

i.i.d. draw of labor productivity `. Each old is endowed with a private (saved)

capital k. The lifetime preferences for the young are:

c1−γ
1

1− ρ
+ β

c1−γ
2

1− γ
,

where γ ≥ 0, and c1, c2 denote consumption of the consumer when young and

old, respectively. Each young is supplying a unit of time inelastically and receives

w(K) wage per unit of efficiency. The problem of a young is then

max
a∈
[

0, w(K)`
] (w(K)`− a

)1−γ

1− γ
+ β

∫ (
ρ(K ′)k

)1−γ

1− γ
q(dk|a),

where K ′ is the future mean capital. Letting ΦK(µ) be the distribution of cap-

ital levels in the following period, as implied by transition function Φ, we have

K ′ =
∫
k d
(
ΦK(µ)

)
(k). The objective of each player has increasing differences in

51 Here, we apply our methods to the study of short-lived players, as in Section 4.3.
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(
a, w(K)`

)
and (k,K ′), for a decreasing ρ(K) and γ ≥ 1.52 Whenever the func-

tion q is increasing stochastically, the equilibrium transition map Φ is monotone

and, thus, the key condition required for our methods to work is satisfied.

A Appendix

A.1 Mathematical glossary

A.1.1 Lattices and supermodularity

Posets, lattices, and chains A partial order ≥X over a set X is a reflexive,

transitive, and antisymmetric binary relation. A partially ordered set, or a poset,

is a pair (X,≥X) consisting of a set X and a partial order ≥X . When it causes

no confusion, we denote (X,≥X) with X.

For any x, x′ ∈ X, their infimum (the greatest lower bound) is denoted by

x ∧ x′, and their supremum (the least upper bound) by x ∨ x′. The poset X is

a lattice if for any x, x′ ∈ X both x ∧ x′ and x ∨ x′ belong to X. Set A is a

sublattice of X if A ⊆ X and A is a lattice with the induced order, where x ∧ x′

and x ∨ x′ are defined with ≥X . A principle example of a lattice is the Euclidean

space (R`,≥) endowed with the natural product order ≥, where x′ ≥ x if x′i ≥ xi,

for all i = 1, . . . , `. In this case, x∧x′ and x∨x′ are given by (x∧x′)i = min{xi, x′i}

and (x ∨ x′)i = max{xi, x′i}, for all i = 1, . . . , `.

For any subset A of a poset X, we denote the supremum and infimum of A

by
∨
A and

∧
A, respectively. That is,

∨
A is the least element in X such that∨

A ≥ a, for all a ∈ A. Clearly, by definition, we have x ∨ x′ =
∨
{x, x′}. We

define
∧
A analogously. A lattice X is complete if both

∨
A and

∧
A belong to

X for any A ⊆ X. We define a complete sublattice analogously.

A chain is a totally ordered poset, i.e., all of its elements are ordered. A poset

52 Preferences need not be power utility for our methods to be applied. For example, if the

lifetime preferences for the newly born young are given by: U(c1, c2) = u(c1) + βv(c2), where u

continuous, concave and v is C 2, then cv′′/v′ ≥ 1 will suffice. Critically, we require“income effect

dominance” in interest rates, which is a type of “gross complements” condition, which induces

increasing differences between individual investment choices and the distribution of assets.
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X is (countably) lower chain complete if any (countable) chain A ⊆ X has its

infimum in X. The poset is (countably) upper chain complete if any such chain

has its supremum in X. The poset is (countably) chain complete if it is both

upper and lower (countably) chain complete.

Let (4,�) be a space of probability distributions over a compact subset of

S ⊂ Rn, endowed with the first order stochastic ordering �. That is, for any two

probability measures µ, ν ∈ 4, we have µ � ν in the first order stochastic sense,

if
∫
f(y)µ(dy) ≥

∫
f(y)ν(dy), for any measurable, bounded function f : S → R

that increases over S with respect to the corresponding ordering. In particular,

(4,�) is a poset (see Kamae et al., 1977) but is not a lattice, unless S is a subset

of R. However, (4,�) is chain complete (see Lemma 2 in Balbus et al., 2015a).

Supermodularity Suppose that X is a lattice. A function f : X → R is super-

modular in x, if f(x ∧ x′) + f(x ∨ x′) ≥ f(x) + f(x′), for any x, x′ ∈ X.

Suppose that X is a lattice and 4 is a space of probability distributions over

a measurable poset S. The function q : X → 4, taking values q(·|x) ∈ 4, is

stochastically supermodular in x if the function f(x) :=
∫
S
u(s)q(ds|x) is super-

modular in x, for any measurable, bounded, and increasing function u : S → R.

Increasing differences For arbitrary posets X and T , function f : X × T → R

has increasing differences in (x, t) if, for any x′ ≥X x and t′ ≥T t, we have

f(x′, t′)− f(x, t′) ≥ f(x′, t)− f(x, t).

The function q : X×T →4 has stochastically increasing differences in (x, t) if

f(x, t) :=
∫
S
u(s)q(ds|x, t) has increasing differences in (x, t), for any measurable,

bounded, and increasing function u : S → R.

Monotone correspondences Let X be a poset and Y be an arbitrary set. The

correspondence Γ : X ⇒ Y is increasing with respect to set inclusion if x′ ≥X x

implies Γ(x) ⊆ Γ(x′).

For any poset X and a lattice Y , the correspondence Γ : X ⇒ Y is increasing

with respect to the strong set order if, for any x′ ≥X x and y ∈ Γ(x), y′ ∈ Γ(x′),
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we have y ∧ y′ ∈ Γ(x) and y ∨ y′ ∈ Γ(x′).

For any posets X, Z and a lattice Y , the correspondence Γ : X × Z ⇒ Y

satisfies strict complementarities if for any x′ ≥X x, z′ ≥Z z, y ∈ Γ(x, z′), and

y′ ∈ Γ(x′, z), we have y ∧ y′ ∈ Γ(x, z) and y ∨ y′ ∈ Γ(x′, z′). The following lemma

is a generalization of Lemma 1 in Hopenhayn and Prescott (1992).

Lemma A.1. Take any posets X, Z and a lattice Y . Endow X × Z with a

product order. If function f : Y ×X × Z → R, taking values f(y, x, z), is su-

permodular in y, has increasing differences in
(
y, (x, z)

)
and (x, z), and the cor-

respondence Γ : X × Z ⇒ Y satisfies strict complementarities, then g(x, z) :=

supy∈Γ(x,z) f(y, x, z) has increasing differences in (x, z).

Proof. Take any x′ ≥X x, z′ ≥Y z, and y ∈ Γ(x, z′), y′ ∈ Γ(x′, z). Then,

g(x, z) + g(x′, z′) ≥ f(y ∧ y′, x, z) + f(y ∨ y′, x′, z′)

= f(y ∧ y′, x, z)− f(y ∧ y′, x, z′) + f(y ∨ y′, x′, z′) + f(y ∧ y′, x, z′)

≥ f(y ∧ y′, x, z)− f(y ∧ y′, x, z′) + f(y, x, z′) + f(y′, x′, z′),

where the first inequality follows from the definition of g and strict complemen-

tarity of Γ, and the second is implied by the fact that

f(y ∧ y′, x, z′) + f(y ∨ y′, x′, z′)

=
[
f(y ∨ y′, x′, z′) + f(y ∧ y′, x′, z′)

]
−
[
f(y ∧ y′, x′, z′)− f(y ∧ y′, x, z′)

]
≥
[
f(y, x′, z′) + f(y′, x′, z′)

]
−
[
f(y, x′, z′)− f(y, x, z′)

]
= f(y, x, z′) + f(y′, x′, z′),

since f is supermodular in y (the first bracket) and has increasing differences in(
y, (x, z)

)
(the second bracket). Thus,

g(x, z) + g(x′, z′) ≥ f(y ∧ y′, x, z)− f(y ∧ y′, x, z′)

+ f(y, x, z′) + f(y′, x′, z′) + f(y′, x′, z)− f(y′, x′, z)

= f(y, x, z′) + f(y′, x′, z) +
[
f(y′, x′, z′)− f(y ∧ y′, x, z′)

]
−
[
f(y′, x′, z)− f(y ∧ y′, x, z)

]
≥ f(y, x, z′) + f(y′, x′, z),
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since f has increasing differences in
(
y, (x, z)

)
and (x, z), thus, in

(
(y, x), z

)
.53 We

conclude by taking the supremum over the right-hand side of this inequality.

Monotone comparative statics Theorem 6.1 in Topkis (1978) states that for any

lattice X and a poset Y , if the correspondence Γ : Y → X increases in the strong

set order and a function f : X×Y → R is supermodular in y and has increasing dif-

ferences in (x, y), then the correspondence x⇒ arg maxy∈Γ(x) f(x, y) is sublattice-

valued and increasing in the strong set order. Moreover, if f is continuous in y

and Γ is compact-valued, then the above correspondence is compact-valued and

admits a greatest and a least selection, both increasing in x. See Theorem 6.2 in

Topkis (1978).

Fixed points We present two theorems that are critical for proving Theorems 1

and 2. Given posets X and Y , a function f : X → Y is increasing if x′ ≥X x

implies f(x′) ≥Y f(x). Below, we generalize Theorem 9 in Markowsky (1976).

Proposition A.1. Let (X,≥X) be a lower chain complete poset with a greatest

element. The set of fixed points of an increasing function f : X → X is a

nonempty lower chain complete poset. Moreover, its greatest fixed point exists

and is given by
∨{

x ∈ X : f(x) ≥X x
}

.54

Proof. Let x̄ be the greatest element of X. Let I be a set of ordinal numbers

with cardinality strictly greater than X. Define the following transfinite sequence

with the initial element x0 = x̄ and xi =
∧{

f(xj) : j < i
}

, for i ∈ I \ {0}. We

claim that {xi} is a well-defined decreasing sequence. Clearly x1 = f(x0) ≤ x0.

Suppose that {xj}j<i is well-defined and decreasing for some i. Then
{
f(xj)

}
j<i

is a decreasing sequence, that has an infimum equal to xi. Consequently xj is well

defined and decreasing on [0, i]. By transfinite induction, the transfinite sequence

53 Indeed, take any y′ ≥Y y, x′ ≥X x, and z′ ≥Z z. If f has increasing differences

in
(
y, (x, z)

)
then f(y′, x′, z′) − f(y, x′, z′) ≥ f(y′, x′, z) − f(y, x′, z), which is equivalent to

f(y′, x′, z′) − f(y′, x′, z) ≥ f(y, x′, z′) − f(y, x′, z). Given that f has increasing differences in

(x, z), we have f(y, x′, z′)− f(y, x′, z) ≥ f(y, x, z′)− f(y, x, z). Combining the two inequalities

yields f(y′, x′, z′)− f(y, x, z′) ≥ f(y′, x′, z)− f(y, x, z).
54 There is an obvious order dual to this result for increasing functions defined on an upper

chain complete domain X that implies existence of the least fixed point theorem.
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{xi}i∈I is well defined and decreasing. Since I has the cardinality strictly greater

than X, there is no one-to-one mapping between I and X. Consequently, take

the least element ī in {i ∈ I : xi = xi+1}. Then xī = xī+1 = f(xī), and

e∗ := xī is a fixed point of f . To show that e∗ =
∨{

x ∈ X : f(x) ≥ x
}

, set

X :=
{
x ∈ X : f(x) ≥ x

}
. Obviously, we have e∗ ∈ X . For any other y ∈ X , we

have y ≤ x0. Suppose there is i ∈ I such that y ≤ xj, for any j < i. Since y ∈ X ,

by transfinite induction, we have y ≤ f(y) ≤ f(xj). Thus, y ≤
∧{

f(xj) : j ≤ i
}

and y ≤ xi, for any i ∈ I , including ī.

Given posets X and Y , function f : X → Y is monotone sup-preserving if,

for any increasing sequence {xk}k∈N, we have f
(∨
{xk}k∈N

)
=
∨{

f(xk)
}
k∈N. It

is monotone inf-preserving if f
(∧
{xk}k∈N

)
=
∧{

f(xk)
}
k∈N, for any decreasing

sequence {xk}k∈N. Below we extend the classic comparative statics results of

Veinott (1992) and Topkis (1998) to countably chain complete posets. The result

is an extension of the Tarski-Kantorovich theorem. See Balbus et al. (2015c).55

Proposition A.2. Let X be a lower countably chain complete poset with the greatest

element
∨
X, and let Θ be a poset. For any function f : X ×Θ→ X and θ ∈ Θ

such that f(·, θ) is increasing and monotone inf-preserving over X, the greatest

fixed point of f(·, θ) is given by
∧{

f(
∨
X, θ)

}
n∈N.56 In addition, if f is increasing

in the product order and f(·, θ) is monotone inf-preserving, for all θ ∈ Θ, then

the greatest fixed point is increasing over Θ.

We now discuss relations between order convergence in M and weak conver-

gence of measures.

Remark A.1. As in the main section, let M be a set of probability measures

over a compact subset of Rn endowed with the first order stochastic dominance

relation �. Since we operate on sequences that are either increasing or decreasing,

the supremum or infimum in M is the limit not only in the (interval) topology

generated by open intervals, but also in the weak topology onM (see Hopenhayn

55 There is a dual version of this theorem for the least fixed point of the monotone sup-

preserving function defined over an upper countably chain complete domain X.
56 By fn we denote the n’th composition of f , i.e., fn = f ◦ f ◦ . . . ◦ f (n times).
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and Prescott, 1992, pp 1389–1391). That is, if {µn} is a first order stochastically

increasing sequence with the supremum µ, then

lim
n→∞

µn = µ =
∞∨
n=1

µn,

where the limit on the left is defined in the sense of weak convergence onM, and

the supremum on the right is defined with respect to (M,�). The same applies to

the mappings Φ ∈ D. Recall that D includes inf-preserving mappings fromM to

itself. In fact, a weakly continuous self-map onM is monotone sup-inf preserving,

but the converse does not hold.

A.1.2 The exact law of large numbers

Super-atomless probability space Let (Λ,L, λ) be a probability space. For any

E ∈ L such that λ(E) > 0, let LE :=
{
E ∩ E ′ : E ′ ∈ L

}
and λE be the re-scaled

measure from the restriction of λ to LE. Let LEλ be the set of equivalence classes

of sets in LE such that λE(E14E2) = 0, for E1, E2 ∈ LE.57 We endow the space

with metric dE : LEλ × LEλ → R given by dE(E1, E2) := λE(E14E2).

Definition A.1 (Super-atomless space). A probability space (Λ,L, λ) is super-

atomless if for any E ∈ L with λ(E) > 0, the space (LEλ , dE) is non-separable.58

As shown by Podczeck (2009), any atomless Borel probability measure on a

Polish space can be extended to a super-atomless probability measure.

Fubini extension For any set Ω and E ⊆ (Λ × Ω), we denote its sections by

Eα :=
{
ω ∈ Ω : (α, ω) ∈ E

}
and Eω :=

{
α ∈ Λ : (α, ω) ∈ E

}
, for any α ∈ Λ and

ω ∈ Ω. Similarly, for any function f defined over λ×Ω, let fα and fω denote the

section of f for a fixed α, ω, respectively. Consider the following definition.

Definition A.2 (Fubini extension). The probability space (Λ × Ω,L � F , λ � P )

is a Fubini extension of the natural product of probability spaces (Λ,L, λ) and

57 We denote E14E2 := (E1 \ E2) ∪ (E2 \ E1).
58 This definition is by Podczeck (2009, 2010). Equivalenlty, Hoover and Keisler (1984) and

Keisler and Sun (2009) dub such spaces ℵ1-atomless and rich, respectively.
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(Ω,F , P ) if: (i) L� F includes all sets from L ⊗ F ; and (ii) for an arbitrary set

E ∈ L�F and (λ⊗ P )-almost every (α, ω) ∈ Λ×Ω, the sections Eα and Eω are

F - and L-measurable, respectively, while

(λ� P )(E) =

∫
Ω

λ(Eω)P (dω) =

∫
Λ

P (Eα)λ(dα).

Given a probability space (Λ,L, λ), a collection of random variables (Xα)α∈Λ

is essentially pairwise independent, if for (λ ⊗ λ)-almost every (α, α′) ∈ Λ × Λ,

random variables Xα and Xα′ are independent. A Fubini extension is rich, if

there is a (L � F)-measurable function X : Λ × Ω → R such that the random

variables (Xα)α∈Λ are essentially pairwise independent and the random variable

Xα has the uniform distribution over [0, 1], for λ-almost every α ∈ Λ. Podczeck

(2010) shows that there exists a rich Fubini extension if and only if the space is

super-atomless. Moreover, without loss, one may assume the random variables

(Xα)α∈Λ to be independent, rather than pairwise-independent.

The (exact) Law of Large Numbers A process is a (L�F)-measurable function

with values in a Polish space. For any process f and set E ∈ L such that λ(E) > 0,

we denote the restriction of f to E×Ω by fE. Naturally, LE�F :=
{
W ∈ L�F :

W ⊆ E×Ω
}

and (λE �P ) is a probability measure re-scaled from the restriction

of (λ� P ) to (LE � F). The following is due to Sun (2006).

Proposition A.3 (Law of Large Numbers). Let f be a process from a rich Fubini

extension (Λ× Ω,L� F , λ� P ) to some Polish space. Then, for all E ∈ L such

that λ(E) > 0 and P -almost every ω ∈ Ω, we have λ(fEω )−1 = (λE � P )(fE)−1.

An iterative application of this proposition and universality of the rich Fubini

extension imply the exact law of large numbers for the dynamic transition in

equation (1).59 Indeed, given any distribution µ0, we can define (µn) recursively:

µt+1 =

∫
T×A

q(t, a, µn)dµn

59 We thank the anonymous Referee for suggesting this proof of the dynamic version of ELLN.
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Then, there exists an implied probability measure µ∞ on (T ×A)∞. Any random

variable h taking values in (T×A)∞ with distribution µ∞ is a Markov process with

state space T ×A, initial distribution µ0 and transition probability q(t, a, µn) from

time n to time n + 1. Sun’s result on the universality of a rich Fubini extension

on Λ × Ω says that there is an essentially pairwise independent process F from

Λ × Ω to (T × A)∞ such that for each α ∈ Λ, Fα has the same distribution µ∞.

Then, Sun’s ELLN says that, for a.e. ω, Fω has the same distribution µ∞, which

means that the type-action distribution in the n-th period for all the agents is µn.

See a related construction derived for a class of Bewley models by Cao (2020).

A.2 Proofs

We begin with a few ancillary results.

Lemma A.2. Let (Ξ,≥) be a poset with its order topology, and {fk} be a sequence

of increasing and monotone inf-preserving functions fk : Ξ→ R. Whenever xk ↓ x

in Ξ and fk ↓ f (pointwise), then fk(xk)→ f(x).

Proof. Let n ∈ N. Since {fk} is a decreasing sequence of increasing functions

and xk ↓ x, then k ≥ n implies f(x) ≤ fk(xk) ≤ fk(xn). Thus, we have f(x) ≤

lim infk→∞ fk(xk) ≤ lim supk→∞ fk(xk) ≤ f(xn). To conclude, let n→∞.

Lemma A.3. Let {νk} be a sequence of probability measures on a Polish space S,

and {hk} be a sequence of bounded, measurable functions hk : S → R. If νk ↓ ν

(stochastically and in weak topology) and hk ↓ h, then limk→∞
∫
hkdνk =

∫
hdν.

Proof. It is a consequence of Lemma A.2, where Ξ is a space of bounded, measur-

able, real valued functions on S, and fk(x) :=
∫
S
x(s)νk(ds), xk(s) = hk(s).

Lemma A.4. Let S1, S2 be topological spaces and f : S1×S2 7→ R be a continuous

function. Let Γ : S1 ⇒ S2 be a continuous and compact-valued correspondence,

and define Γ∗(x) := arg max
y∈Γ(x)

f(x, y). If xk → x in S1, yk → y in S2, and

yk ∈ Γ∗(xk), then y ∈ Γ∗(x).
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Proof. Let y′ ∈ Γ(x). By continuity of Γ, for any k ∈ N, there is y′k ∈ Γ(xk) such

that y′k → y′. Since yk ∈ Γ∗(xk), we have f(xk, yk) ≥ f(xk, y
′
k), for all k ∈ N. By

continuity of f , this implies that f(x, y) ≥ f(x, y′). Since y′ ∈ Γ(x) is arbitrary,

we have y ∈ Γ∗(x).

We proceed with the proofs that were omitted in the main paper.

Proof of Lemma 1. Consider vn ∈ V , for all n ∈ N, and vn → v. Let (µk) and

(Φk) be a collection of decreasing sequences in M and D, respectively, such that

µk → µ (weakly) and Φk → Φ (pointwise). Take any t ∈ T and ε > 0. There is

n0 ∈ N such that, for all k ∈ N and n ≥ n0, we have

|v(t, µk,Φk)−v(t, µ,Φ)| ≤ |v(t, µk,Φk)−vn(t, µk,Φk)|+|vn(t, µk,Φk)−vn(t, µ,Φ)|

+ |vn(t, µ,Φ)− v(t, µ,Φ)| ≤ 2

3
ε+ |vn(t, µk,Φk)− vn(t, µ,Φ)| (11)

Take any n ∈ N satisfying (11). Since vn ∈ V , for large enough k, we have∣∣vn(t, µk,Φn)− vn(t, µ,Φ)
∣∣ ≤ ε/3. Given (11), |v(t, µk,Φk)− v(t, µ,Φ)| < ε, for a

large k. Hence, v is monotone inf-preserving. Thus, v ∈ V . �

Continuation of the proof to Lemma 4. We prove (vi). Using Assumption 2,

definition of V , and Lemma A.4, one can show that F is a Carathéodory func-

tion in (t, a), i.e., measurable in t and continuous in a. Hence, by Assumption 1

and Measurable Maximum Theorem (Theorem 18.19 in Aliprantis and Border,

2006) the correspondence Γ(t, µ; v,Φ) is measurable in t, hence, weakly measur-

able.60 For each j = 1, 2, . . . , k, the function πj(t) := maxa∈Γ(t,µ;v,Φ) aj is measur-

able (again, by the Measurable Maximum Theorem). Thus, t → γ(t, µ,Φ; v) =(
π1(t), π2(t), . . . , πk(t)

)
is measurable. �
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