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Abstract

This paper presents a new systematic approach to characterizing the set of stationary equilibria in
the canonical small open economy model of sudden stops with price dependent collateral constraints.
We first prove the existence of both sequential competitive equilibrium (SCE) and recursive competi-
tive equilibrium (RCE). Relative to the set of RCE, we also provide a complete theory of equilibrium
monotone comparative statics for all RCE relative to the deep parameters of the model, as well as
provide a sufficient condition for the existence of a unique RCE. Then, using Generalized Markov
equilibrium (GME) representations of SCE, we prove the existence of ergodic stationary equilibria.
We show that the existence of an ergodic GME selectors depends critically on long-memory recursive
representation of SCE (and, in particular, are not guaranteed to exist relative to RCE representations
of SCE). We are also able to differentiate between short and long run global equilibrium stochastic
dynamics and to find conditions that preserve the global stochastic stability of a suitable recursive
equilibrium notion (i.e., an ergodic GME). For our results, the interplay between the RCE and the
GME is critical. Finally, using numerical methods, we compare the properties of ergodic stationary
equilibrium selectors vs other stationary equilibria (e.g., stationary equilibria as invariant measures).
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1 Introduction

The recent literature on financial crises and sudden stops in emerging markets is voluminous.1. A critical
element in this literature is the presence of an occasionally binding price-dependent equilibrium collateral
constraint which is of central importance to generating emerging market financial crises through “pe-
cuniary externalities” in this class of models. But it is also this feature that has also been argued to
create the possibility of multiple sequential competitive equilibria (SCE). For example, in a recent paper
by Schmitt-Grohé and Uribe ([74]), the authors show that pecuniary externalities can create multiple
equilibria relative to SCE.2

The presence of multiple equilibria leads to a number of new important research questions from both
a theoretical and applied perspective. First, dynamic equilibrium multiplicity complicates the character-
ization of stochastic equilibrium dynamics, and leads one naturally to ask if it is possible to provide a
unified methodological approach to characterizing the set of possible SCE and/or recursive competitive
equilibrium (RCE) dynamics as well compare their different equilibrium properties. Given the stochastic
nature of these models, such a unified approach needs to be global (i.e., capable of constructing stationary
equilibria from any initial state of the economy). It should also provide a sharp characterization of the
sources of multiple dynamic equilibria. Additionally, it has been argued that the presence of the multiple
SCE can generate “low borrowing” versus “high borrowing” dynamic equilibria (e.g., see Schmitt-Grohé
and Uribe ([73], [74])), suggesting the set of dynamic equilibria possesses an order theoretic structure.
This is also an important feature of the equilibria in this class of models that should be addressed. Fi-
nally, it would be interesting if one could develop tools that allow researchers to distinguish the stochastic
equilibrium properties of different SCE and/or RCE selectors, which could possess differences in their
short-run and long-run stochastic properties (e.g., differences relative to business cycle data in economies
exposed to balance of payments crises).3 Ideally, these tools should be accurate and numerically efficient.

This paper provides affirmative answers to all of these questions. In particular, the paper proposes a
new constructive approach to the global characterization of the set of dynamic equilibrium in an infinite
horizon general equilibrium stochastic economy with incomplete markets, where agents are subject to
price dependent and occasionally binding constraints in the workhorse model in the small open economy
literature (a two-sector endowment economy due to Bianchi ([15]) and Schmitt-Grohé and Uribe ([74],
[75])). Our new tools provide a complete picture of how to handle the multiplicities inherent to this
framework.

We first prove the existence of the SCE, RCE, and Generalized Markov equilibrium (GME) in these
models. We then use these characterizations to prove the existence of an ergodic generalized Markov
equilibrium. This latter result is surprising as, because of the presence of multiple equilibria, stochastic
equilibrium dynamics are generally discontinuous. This latter result allows us then to explore the interplay
between the minimal state space and the GME representations of SCE in the characterization of stochastic
equilibrium dynamics, as well as derive a computable framework to approximate and characterize the long
and short run properties of models with price-dependent inequality constraint and multiple equilibria.

1A small sampling of work in this literature includes the early work of Mendoza ([48], [49]), Mendoza and Smith ([50]),
Biachi ([15]), Benigno, Chen, Otrok, Rebucci, and Young ( e.g., see [11], [12]), Bianchi, Liu, and Mendoza ([16]). More
recent papers include the papers of Schmitt-Grohé and Uribe ([73], [74], [75]), Arce, Bengui, and Bianchi ([6]), and Lutz
and Zessner-Spitzenberg ([45]), Ottonello, Perez, and Vassaco ([59], [60]), Bengui and Bianchi ([14]), Rojas and Saffie ([66]),
and Davis, Deverous, and Yu ([29]).

2It bears mentioning, the multiplicity result for SCE in Schmitt-Grohé and Uribe ([74]) pertains to the deterministic
version of the model and is local to the steady-state. It is also important to note that we are not aware of any proof of
existence of any SCE (or a recursive competitive equilibrium (RCE)) in either deterministic or stochastic versions of this
model in the existing literature. So aside from developing new theoretical tools for characterizing the multiple stationary
equilibria in these models, this paper also provides the first sufficient conditions for the existence of both SCE and RCE in
the stochastic version the sudden stops model.

3Such differences in stochastic stability of SCE or RCE could also be critical when considering questions of econometric
estimation (e.g., see the recent work on Benigno, Chen, Otrok, and Rebucci ([13])) for example) where conditions for the
existence of ergodic stationary Markov equilibria could be very useful in the model’s estimation.
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1.1 Summary of Main Results

For the benchmark two sector small open economy with equilibrium price dependent collateral constraints
that has been studied extensively in literature over the last decade, we first provide a general SCE
existence result. We then sharpen our SCE existence and characterization results for the case of RCE,
an important subclass of SCE that is a critical focal point of a great deal of numerical work in the recent
literature. We believe our results of the existence of dynamic equilibria in this class of models are the first
in the literature.4 These existence results are not only of purely theoretical interest as they are necessary
to guarantee our application of GME methods for characterizing multiple equilibrium stochastic dynamic.
Such dynamics are well-defined globally from all admissible initial conditions of the stochastic model.

Relative to the set of RCE, we propose a new multistep monotone operator approach based on an
equilibrium version of the Euler inequalities to characterizing the set of RCE. We prove that there exists
a complete lattice of RCE. Further, we provide explicit iterative tools for computing the least and greatest
RCE monotone comparative statics relative to deep parameters. Moreover, we also provide a generalized
iterative procedures for computing monotone comparative statics of RCE/fixed point bounds from any
RCE. In doing so, we are able to provide a complete constructive qualitative theory of all RCE for this
class of models and connect them with the deep parameters of the model. In particular, relative to the
literature that has focused on “low” and “high” borrowing dynamic equilibrium, we show that the least
(resp., greatest) RCE correspond to “low” (resp., “high”) borrowing RCE as mentioned in Schmitt-Grohé
and Uribe ([74]). More to the point, we show how to compute each extremal RCE by simple successive
approximations. In doing so, we also provide a new systematic approach based on monotonicity of
our RCE operator that addresses the issue of “strict positivity” of equilibrium consumption in dynamic
equilibria that has been discussed in the literature.5 Finally, we provide the first sufficient conditions for
the uniqueness of RCE in this class of stochastic models in the literature.

Our approach to constructing RCE is built on a new characterization of the structure of implicit
equilibrium complementarities that exist between household and aggregate tradeables consumption. To
obtain monotonicity for our RCE operator, we show that the well-known pecuniary externality that
exists in these models when equilibrium collateral constraints bind in a RCE creates an equilibrium
single-crossing condition between household tradeables consumption and per-capita aggregate levels of
household tradeables that is parameterizing the relative price of nontradeables to tradeables in the equi-
librium collateral constraint. For “low” vs. “high” borrowing RCE, for example, the central mechanism
for equilibrium multiplicity is intuitive: if agents perceive the aggregate laws of motion of equilibrium
states governing future per-capita aggregate borrowing will be “low” (resp., “high”) in the future, RCE
household collateral constraints will be tighter (resp., looser) because relative price of tradeables will
be lower (resp., high) in a candidate perceived RCE, and these expectations are globally self-generating
when the consumption aggregator that parameterizes relative price of tradeables generates multiple roots
for implied maximal tradeable consumption via a version of the equilibrium collateral constraint. This,
in turn, implies the existence of a least (resp., greatest) borrowing RCE where consumption/debt will
be lower (resp., higher). We prove this equilibrium single-crossing condition provides a global source of
ordered RCE.6

The paper then studies the set of stationary equilibria for these models. Here, using a novel version of
a Generalized Markov Equilibrium (GME) approach, we are able to characterize and compare formally
the stochastic equilibrium dynamics of different classes of SCE (including RCE as a subset). In particular,
using GME methods, we construct representations of the stochastic dynamics derived from both the set
of RCE as studied in Bianchi ([15]) as well as the set of sequential competitive equilibrium dynamics
constructed in papers such as Schmitt-Grohé and Uribe ([73], [74], [75]) within the context of a single
unified global methodological setting.7 In doing so, we find some important differences in these classes

4Our tools appear to apply in more general classes of model with collateral constraints. (e.g., see Pierri and Reffett [64]
for discussion).

5For example, see Schmitt-Grohé and Uribe ([74]) and Bianchi and Mendoza ([18]) for discussion of this issue.
6It is important to note, this single-crossing condition only appears in equilibrium. That is, household optimal decision

for tradeables consumption are not monotone in per-capita aggregate levels of tradeables consumption.
7By ”minimal state space recursive equilibria” (RE), we mean sequential equilibrium that admit a Markovian represen-

tation on a set of only minimal current state variables with no ”endogenous” states. GME representations of sequential
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of sequential stochastic equilibria. In particular, they have very different long-run stationary equilibrium
properties. For example, by exploiting long-memory GME representations of SCE, we build a global
theory of ergodic stationary equilibrium. That is, we prove the existence of such ergodic GME selectors,
we show that structure of memory in the recursive GME representation of SCE plays a critical role in
ergodic stochastic equilibrium dynamics. We also show that the existence of ergodic equilibrium selectors
from the set of SCE cannot be guaranteed to exist if we restrict attention to only short-memory RCE
selectors from the set of GME/SCE. As such short-memory RCE are the focus of much quantitative work
in the literature (e.g., see Bianchi ([15]), for example), this results seems important.8

Our construction of ergodic stationary equilibrium is particularly surprising as it is well-known that the
canonical sudden stops model can possess multiple sequential competitive equilibria, and hence stochastic
equilibrium dynamics can easily become discontinuous from initial conditions . Therefore, characterizing
SCE selections that induce ergodic equilibria of these models is very challenging endeavor.9

The key ingredients to identifying ergodic GME selections turns out to the occasionally binding
equilibrium price-dependent collateral constraint and the flexibility of this equilibrium notion. As it is
possible to embed some of the qualitative properties of the RCE into the GME, the equilibrium collateral
constraint allows us to characterize the regeneration properties of stochastic equilibrium dynamics; a
critical ingredient in proving the existence of ergodic GME selectors. In this sense, the interplay between
the constructive and global characterization of the RCE and the flexibility of the GME is essential to
achieve ergodicity. Mathematically, ergodic GME selectors are identified by constructing a so-called
“atom” of the equilibrium Markov process. The process regenerates at the atom, a property that turns
out to be deeply connected with global stability of stochastic equilibrium dynamics. In a sense, ergodicity
of SCE selectors becomes a natural equilibrium selection device for characterizing short and long run
stochastic dynamics among multiple SCE paths.

We also show GME methods can be used to compare stationary, non-stationary, and ergodic equilib-
rium selections (and their associated long-run stochastic properties). When doing this, using numerical
methods, we find that ergodic selections have a different equilibrium stochastic structure that other GME
selectors: they are less financially constrained and thus have smoother consumption paths. Even though
the GME has a larger state space relative to the RCE, it can be computed efficiently. This is because we
choose the additional state variable not only to expand the memory of the process but also to allow some
paths of the GME to inherit the qualitative properties of the RCE. Thus, the interplay between these 2
equilibrium notions is also essential from a numerical perspective.

1.2 This Paper and the Existing Literature

This paper contributes to this literature in many ways in the context of the endowment two-sector
small open economy model of Sudden Stops proposed in Bianchi ([15]).This model has been studied also
extensively in a series of recent papers also by Schmitt-Grohé and Uribe ([73], [74], [75]), among others,
where equilibrium multiplicity has been a focal point of the analysis. A common characteristic in the
emerging market financial crises literature is the importance of equilibrium price-dependent collateral
constraints in understanding the structure and genesis of the event. The collateral constraints are critical
in explaining not only the mechanism by which financial crises occur by forcing emerging economies to
pay down past debts, creating a possible collapse in consumption, prices, and current accounts, but also
the observed co-movement in macro aggregates and the Fisherian deflation narrative suitable for emerging
markets.

equilibrium critically require, among other things, additional state variable which are typically endogenous.
8RCE are “short memory” in the sense they are Markovian equilibrium that depend on only the current set of minimal

states (and hence, 0-memory SCE). GME representations of SCE are recursive in general on the minimal state space only
if one enlarges the set of state variables to include endogenous “states” such as envelope theorems, value functions, etc. For
infinite horizon economies like those in this paper, GME representations of SCE could in principle have infinite memory
when viewed from the perspective of a minimal state space.

9Although our focus in this paper is on GME methods and their ability to characterize stochastic equilibria is in the
canonical model of sudden stops in the literature, as will be clear in the sequel, the central methodological theme of this paper
is much more general, and makes the case for GME approaches in many stochastic equilibrium models with (endogenous)
equilibrium collateral constraints and multiple equilibria.

4



Relative to the work of Bianchi ([15]), we extend his results in several directions. From a theoretical
point of view, we provide a complete qualitative theory of how the set of RCE depend on the deep
parameters of the model, as well as provide a new successive approximation/generalized “time-iteration”
algorithm for computing least and greatest RCE as well as their equilibrium comparative statics. We
also provide a new class of generalized iteration methods that can compute RCE bounds from any initial
element of the domain of our RCE operator, as well as provide iterative methods for comparing all RCE
as the parameters of the economy vary. The latter is particularly useful for numerical computation of
RCE, as well as numerical comparisons of RCE under different parameter settings. Second, as in Bianchi
([15]), we study global stochastic equilibrium properties, but here we do this relative to the set of RCE.
However, we also study stochastic equilibrium dynamics within the context of a GME representations
(not just RCE representations) of SCE. The GME representations allow us to address many new and
interesting features. For example, we can compare the stochastic properties of different types of stationary
equilibrium within the context of the same model, and even deal with a non-stationary representation.

Relative to the work of Schmitt-Grohé and Uribe (e.g., [74], [75])), although the approach taken in this
paper is very different than that taken in their work, our work complements their work along a number
of new directions. First, exploiting the same source of equilibrium multiplicities discussed in their papers
in the context of SCE, we globalize their results on existence of multiple equilibria for the case of RCE in
the stochastic economy. Second, we take a very different quantitative approach to studying the properties
of stochastic dynamic equilibria by using GME methods. In Schmitt-Grohé and Uribe ( [74], [75]), their
approach to characterizing the existence of multiple equilibrium is built upon the deterministic versions
of the model, and in particular sequential equilibrium behavior “local” near a (deterministic) steady-
state.10 Our results are never “local” or “deterministic”, rather always global and stochastic. We also
show the existence of the pecuniary externality they focus on in their work implies an implicit equilibrium
complementarity that generates the existence of multiple stochastic stationary equilibria. Our approach
also builds a theory of stationary stochastic equilibrium from any arbitrary initial condition, providing a
systematic approach to understanding the interplay between modeling multiple equilibrium, memory and
the associated stationary equilibrium from vantage point of selectors from the set of GME representations
of SCE. As in some of their work, what is critical in our approach to study stochastic properties of GME
selections is the presence of “hit” times for the collateral constraint, and then use them to regenerate the
equilibrium Markov process.

Our GME approach is general and can be potentially be applied in other models of Sudden Stops
found in the existing literature such as models with elastic labor supply and production. Versions of the
models with production include the early papers of Mendoza ([48]) and Mendoza and Smith ([50])), as
well as the series of interesting papers by Benigno, Chen, Otrok, Rebucci, and Young ( e.g., see [11],
[12])).11

Our paper also is related to an emerging literature that seeks to characterize dynamic models with
equilibrium borrowing constraints (and/or occasionally-binding constraints). Relative to this literature,
we provide a new set of tools for characterizing the RCE and SCE in models with equilibrium price-
dependent collateral constraints. Our multistep fixed point approach to RCE can be show to be useful
on other related dynamic equilibrium models where stationary equilibrium partitions into states where
collateral constraints are “slack” versus, “binding”, and include models of credit cycles in the spirit of
Kiyotaki and Moore ([39]),12 models of financial frictions and production with collateral constraints such
as Moll ([55]) or models of self-fulling credit cycles such as Azariadis, Kaas, and Wen ([7]).

This paper also contributes to the literature on self-generation methods and GME methods via strate-
gic dynamic programming approaches to dynamic stochastic general equilibrium models (DSGEs). Self
generation techniques were first introduced in the repeated games in the Abreu, Pearce, and Stacchetti
([1], [2]) and are related to implementations of the methods for studying the existence of Markovian equi-
librium in dynamic stochastic models/games found in Blume ([20]) and Duffie, Geanokopolis, Mas-Colell,
and McLennan ([31]). Approaches to making operational these methods in the context of GME represen-

10These papers then can characterize stochastic SCE dynamics using techniques building “stationary sunspot” approaches
(e.g., see related work in Woodford ([82]) and Schmitt-Grohé ([70]), for example).

11These extensions are studied in Pierri and Reffett ([64]).
12See the survey of Gertler and Kiyotaki [35] for a nice discussion of this large literature.

5



tations and enlarge state spaces stems from the work of Kydland and Prescott ([42]), among others. 13.
A novel aspect of this paper is that by exploiting the structure of equilibrium price-dependent collateral
constraints, we are able to propose a systematic approach to SCE selections, based upon ergodic GME
selectors.

At least since the paper of Blume ([20]), when studying questions of equilibrium stochastic stabil-
ity, it has along been recognized the trade off between the multiplicity of sequential equilibria and the
continuity properties of the associated recursive representation. In other words, the presence of multiple
equilibrium can generate discontinuities if dynamic equilibria over minimal state space equilibrium tran-
sition functions. In some cases, by enlarging the state space, it is possible to obtain a continuous Markov
equilibrium (see Pierri, [62] ); but unfortunately, there is no general theory about how to do this (see
Kubler and Schmedders, ([40]), for a counter-example). Interestingly, in the context of models with price
dependent collateral constraints, we show that the GME methods we develop in section 4 are critical in
the presence of this type of discontinuities, which may affect the existence of an ergodic equilibrium.

Our work is also directly related to the large literature on the equilibrium comparative statics in
dynamic economies using monotone-map methods (or “time-iteration”) methods.14 In a recent paper,
Datta, Reffett, and Wozny ([27]) propose a multistep monotone-map/time iteration method that proves
especially suited for dynamic models with multiple RCE. Our paper extends the class of multi-step
monotone-map methods to dynamic models with equilibrium price-dependent collateral constraints. In
addition, our paper is also related to Mirman, Morand, and Reffett ([54]) and Acemoglu and Jensen ([3])
as it provides sufficient conditions for monotone dynamic equilibrium comparative statics in the deep
parameters of the economy. In particular, this paper extends these results into the dynamic models with
equilibrium price-dependent borrowing constraints.

Given the approach to characterizing dynamic equilibria in this paper, we also address many of the
interesting questions raised in recent work that discussed the critical difference between local versus global
methods for these models relative to solving equilibrium functional equations (e.g., as discussed in the
new work of De Groot, Durdu and Mendoza ([30]) and Mendoza and Villallazo ([51])), but also focuses
on the implications of GME methods for characterizing, computing and simulating ergodic, stationary
and non-stationary equilibria.

The remainder of the paper is as follows: in section 2 discusses the model, and proves the existence of
SCE. In section 3, we characterize the set of RCE for these models. Section 4 then contains the results
for the GME and section 5 a) discusses the interplay between the SCE, the RCE and the GME, and how
to handle multiple equilibrium from a constructive perspective, b) characterizes multiple equilibrium in
a stochastic setting, c) solves the model, compute and simulate ergodic, stationary and non-stationary
equilibrium. Section 6 concludes with a few remarks about further research questions and extensions.

2 The Model and Sequential Competitive Equilibrium

We consider the endowment version of the two-sector small open economy model studied in Bianchi ([15])
and Schmitt-Grohe and Uribe ([73], [74], [75]). The model is a small open economy with a fixed interest
rate. Time is discrete over an infinite horizon and indexed by t ∈ {0, 1, 2, ...}. There is a representative
agent and two sectors of perishable goods, a tradable consumption good yTt and a non-tradable con-
sumption good yNt . Each household is endowed a strictly positive amount of each good in each period.
Upon receiving their current period endowments, households sell endowments at current market prices
and choose consumption of both goods. The consumption of tradeable and non-tradeable is denoted,
respectively, by cTt and cNt . It turns out to be useful to take as the numeraire the tradable good, so the
relative price of non-tradeable relative to the numeraire tradeable in period t is denoted by pt.

Household preferences are defined over infinite sequences of dated consumption vectors of tradeable
and non-tradeable goods ct = (cTt , c

N
t ) ∈ X ⊃ R2

+ where X is the commodity space for consumption of
tradeable and non-tradeable in each period, and are assumed to be time separable with subjective discount

13See Kubler and Schmedders ([41]), Feng, Miao, Peralta-Alva, and Santos ([33]), and Cao ([22]).
14This literature started with the papers of Coleman ([23], [24]), and was extended in Datta, Mirman, and Reffett ([26]),

Morand and Reffett ([56]), and Mirman, Morand, and Reffett ([54]), among many others.
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factor β ∈ (0, 1). These preferences are represented by a nested utility function which is a composition
of two functions: a utility over composite consumption U : R −→ R, and an aggregator A : X −→ R
over tradeable and non-tradeable consumption ct = (cTt , c

N
t ) , where the preferences U(A(c)) gives the

instantaneous utility of the vector of consumption c ∈ X in any period. Then, lifetime discounted
expected utility preferences of a typical household are given by:

E0

∞∑
t=0

βtU(A(ct)) (1)

where the mathematical expectation operator here is taken over the stochastic structure of uncertainty
with respect to the date 0 information.15

Uncertainty in the economy is modeled as an iid stochastic process governing tradeable endowments
y = {yTt }t, where each element of sequence y has distribution given by the measure χ(·). Here, for
convenience, we assume the sequence of non-tradeable endowments {yNt }t is non-stochastic as it plays
no role in the characterization of stochastic equilibrium dynamics in this paper. We assume further that
the realizations for tradeable endowments in any period denoted by yTt ∈ Y where the shock space Y
is finite set.16 By an application of standard results, these assumptions on shocks imply it is possible to
define a stochastic process (Y∞, Ω, µyT0 ) which takes realizations in each period in Y . 17 Given this fact,

denote by Y∞ the space of infinite sequences in Y , and assume yT0 ∈ Y is the initial condition for this
stochastic process for tradeable.

Households face a sequence of budgets constraints when making their sequential choices for consump-
tion and debt over their lifetimes. In particular, given a candidate price sequence p = {pt}∞t=0, and
denoting the net debt position for a typical household with debt borrowed at date t but maturing at date
t+ 1 by dt+1, the budget constraint for a household in any period t is given by:

cTt + ptc
N
t + dt = yTt + pty

N
t +

dt+1

R
(2)

where agents are allowed to borrow or lend at a fixed interest rate R = 1 + r and, as this is a small open
economy, R is taken as given. The sequential budget constraints here follow the timing convention used
in Schmitt-Grohé and Uribe ([74], [75]), and assume consumption and income decisions are taken at the
beginning of the period, and interest is then paid/earned over that same period. We adopt this timing
only because it proves to be convenient in characterizing the structure of dynamic equilibrium.18 In
addition to the budget constraint in (2), a typical household also faces a period by period flow collateral
constraint on debt given by:

dt+1 ≤ κ(yTt + pty
N
t ) (3)

where κ > 0 19

The collateral constraint in (3) is an occasionally binding price-dependent collateral constraint that
is endogenous and an equilibrium object. In fact, we shall prove that in equilibrium this endogenous

15A typical functional form for the consumption aggregatorA(c) in the literature is the Armington/CES aggregator

ct = A(cTt , c
N
t ) = [ac

T 1− 1
ξ

t + (1− a)c
N 1− 1

ξ
t ]

1

1− 1
ξ

with ξ > 0, a ∈ (0, 1), which is increasing, strictly concave, and supermodular on X when X = R2
+ with its product order.

16All the results of sections 2 and 3 on the existence on SCE and RCE hold for more general shocks (i.e., endowment
processes for tradeables consumption that follow a first order Markov process with stationary transition χ(yT , yT ′) on a
continuous shock space but with substantial differences in proofs (especially for the case of SCE). See Pierri and Reffett
([64]).

17e.g., see Stokey, Lucas and Prescott ([78], chapter 7)).
18Bianchi ([15]) uses a slightly different timing convention, but it turns out this timing convention is without loss of

generality in our case (see, for example, Adda and Cooper ([4]) for a detailed discussion of this matter).
Also, in this paper, we do not address the important question of ”future” vs ”current” wealth collateral constraints as

discussed in Brooks and Dovis ([19]) and Ottonello et al ([60]). Some cases of ”future” wealth collateral constraints can be
put into our framework as discussed in Pierri and Reffett ([64]).

19As is well-known in this literature, one can write down more fundamental versions of this model where this debt
constraint emerges as an equilibrium object from the primitives of the underlying economy. For our purposes, we just follow
the literature and impose this form of a price-dependent collateral constraint.
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constraint is the source of equilibrium complementarities (and hence, equilibrium multiplicities) in these
models. As mentioned earlier, we shall show the endogeneity of the equilibrium collateral constraint
will create a type of equilibrium pecuniary complementarity into this model. In particular, when agents
believe in equilibrium paths for per-capita tradeable consumption will be “higher”, the equilibrium col-
lateral constraint is relaxed, allowing household tradeable consumption to expand via access to additional
debt and tradeable consumption. In a RCE, for example, we shall show that the equilibrium collateral
constraints are themselves ordered.

2.1 Existence of Sequential Competitive Equilibrium (SCE)

We now consider sufficient conditions for the existence of a SCE. In a SCE, the representative household
takes as parametric an interest rate R, a level of initial debt d0 ∈ D (where D ⊂ R is a compact set
of debt states which will be constructed in a moment), a stochastic process governing yT = {yTt }∞t=0

conditional on an initial level of tradeable endowment yT0 ∈ Y with yT0 > 0, a constant level of non-
tradeable endowment yNt = yN , and a history-dependent sequence of measurable prices p = {pt(yt)}∞t=0,
where we use the notation yt = {yT0 , yT1 , .., yTt } to denote the history of tradeable endowment realizations
up to period t, and it maximizes lifetime utility in (1) subject to constraints (2) and (3) for each time
period. That is, given R ≥ 0, d0, the stochastic processes p and y, the household solves the following:

V ∗(s0, p, R) = maxE0

∞∑
t=0

βtU(A(ct)) (4)

cTt + ptc
N
t + dt = yTt + pty

N
t +

dt+1

R
; dt+1 ≤ κ(yTt + pty

N
t ), t ∈ {0, 1, 2, ...} (5)

where the initial states are s0 = (d0, y
T
0 ), and yT0 ∈ Y . We denote the optimal policy sequences for

consumption and debt achieving the maximum on (4) by

c∗(s0, p, R) = {c∗t (s0, p, R)}∞t=0; d∗(s0, p, R) = {d∗t (s0, p, R)}∞t=0} (6)

where in a moment we shall impose sufficient convexity and continuity conditions on the primitive data
of the model such that (a) the value function V ∗(s0, p, R) is finite, and (b) optimal sequences c∗(s0, p, R)
and d∗(s0, p, R) are well-defined and unique.

Further, when in a moment we impose Assumptions 1 on preferences, the households sequential opti-
mization problem will satisfy standard convexity, continuity conditions, and continuous differentiability
assumptions on preferences, and by an appeal to well-known duality arguments in the literature (e.g.,
Rincon-Zapatero and Santos ([65]), theorem 3.1) , we can show that there exists a well-defined standard
Lagrangian formulation for the sequential primal problem in (4) with (summable) dual variables βtλt
and βtλtµt associated with the sequence of constraints (2) and (3), respectively, and well as standard
envelope theorems from date 0 household states. Noting our constrained system satisfies sequential linear
independence constraint qualifications, strong duality holds between the resulting Lagrangian formulation
and the primal program in (4) and the infinite dimensional system of KKT multipliers are well-defined
and unique. We can then formulate the system of first order conditions for this problem in a sequential
competitive equilibrium using the Lagrangian dual as follows: the optimal stochastic processes c∗(s0, p, R)
and d∗(s0, p, R) satisfy

λ∗t = U ′(A(c∗t ))A1(c∗t ) (7)

pt =
A2(c∗t )

A1(c∗t )
(8)

[
1

R
− µ∗t ]λ∗t = βEtλ

∗
t+1 (9)

µ∗t [d
∗
t+1 − κ(yTt + pty

N
t )] = 0, µ∗t ≥ 0 (10)
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Equations (7) to (10) characterize optimization. Before defining an equilibrium, we must describe
feasibility. As it is standard in the literature, we only require the market of non-tradable goods to clear:
cNt = yN . Then, a SCE for this economy is then defined as follows: 20

Definition 1 A Sequential Competitive equilibrium (SCE) is a collection of progressively Ω-measurable
random variables for consumption c∗(s0, p

∗(s0, R), R), debt d∗(s0, p
∗(s0, R), R), and relative prices of non-

tradeable to tradeable consumption p∗(s0, R) such that: 1) the representative agent chooses c∗(s0, p
∗, R),

d∗(s0, p
∗, R) to solve (4) given s0 at p∗(s0, R) such that V ∗(s0, p, R) is finite and equations (7-10) hold,

and 2) markets clear cN∗t (st) = yN where yt holds µyT0 -a.e

Before discussing our sufficient conditions for the existence of SCE, we need to mention a few key
technical issues that arise when studying the structure of SCE in stochastic infinite horizon debt models.
The first issue is to place enough structure on the model’s primitive data so that we can characterize
the (nonempty) set of stochastic steady state distributions for the model (i.e., the set of stationary
equilibrium). A stationary equilibrium in this model can be associated with either the SCE and/or the
recursive equilibrium of the model. So we need to impose sufficient structure on the model such that we
can obtain sufficient boundedness (actually, compactness) for the stochastic equilibrium dynamics of the
model. In the existing literature, the question of how to provide lower and upper bounds for stochastic
equilibrium paths for endogenous variables in small open economy frameworks such as ours has not been
addressed. Yet, it is well known that in stochastic models of debt, issues related to lower and upper
bounds can be delicate.

To impose sufficient structure to obtain such lower and upper bounds on stochastic sequential equilib-
rium dynamics, what is typically done in the existing literature to impose bounds on the marginal utility
of consumption (in addition to an otherwise standard conditions on the model’s primitive data). These
bounds on marginal utilities involve modifying standard preferences in the literature in a manner we will
define in a moment when we state our sufficient conditions for existence of SCE.21 What is critical to note
here is that these type of restrictions do not affect the stochastic dynamic behavior of the model when
compared to the more “traditional” CES preferences (as we shall discuss in the quantitative section of
the paper in section 5). 22 They are critical though to insure the necessary compactness of the sequential
equilibrium set, as well as provide the basis for the existence of a stationary and compact state space
in both the SCE and recursive (Markovian) formulations of the dynamic equilibrium of the model.23 So
first we show that any sequential competitive equilibrium in this economy is compact.

We then state our assumptions on the primitive data of the model as follows:

Assumption 1: The functions U(x) and x = A(c) satisfy the following conditions: a.i) limx−→∞U
′(x) =

0 or a.ii) ∃x ∈ X such that ∀y ∈ Bε(x) U(y) ≤ U(x) ε > 0, a.iii) Let A(., .) be a function map-
ping X 7→ R+, where X is the consumption space, b) R2

+ ⊂ X,X open, c) A1(c) = A1(., c2) ∈ R, for all
c2 ∈ X |c2 , A2(c) = A2(c1, .) ∈ R for all c1 ∈ X |c1 , where X |cj is the projection of the consumption space
on its cj component for j = 1, 2, 24 d) A2(c)/A1(c) = A2(c2)/A1(c1) and A2(c2)/A1(c1) is increasing in
c1 given c2 = yN , e) limc1−→∞A1(c1, c2) = cl1 > 0 for all c2 ∈ X |c2 , f) limc1−→0A1(c1, c2) = cu1 < ∞

20In the appendix, where we prove existence of sequential competitive equilibrium, we had the formalities of measurability
of SCE processes more rigorous. See the details there.

21We should mention, when we prove the existence of RCE (a type of SCE), we use completely standard conditions on
utility U(A(c)) that allow for standard Inada conditions near zero consumption. Such a condition is very helpful (although
not necessary) to prove the existence of strictly positive RCE tradeable consumption. Proving the existence of RCE under
just Assumption 1 can also be done also, but constructing the least RCE with strictly positive consumption is not clear.
The proof of the greatest RCE, though, with strictly positive consumption is straight-forward. See Pierri and Reffett ( [64])
for added discussion.

22That is, when studying the quantitative stochastic properties of these models in calibrated settings, compactness of the
state space if often present without these types of “boundary” conditions on preferences

23The compactness needed is in the sense that realizations of equilibrium random variables are all contained in a compact
subset of a finite dimensional space.

24This assumption is made to guarantee that the limit is well defined as we need to impose an upper / lower bound on
the derivative for the limits. Also, the notation A j denotes the partial derivative with respect to the j = 1, 2 argument of
A.
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for all c2 ∈ X |c2 , g) U(A(c)) : X −→ R is C1 continuous, strictly increasing, supermodular, and strictly
concave.

We make a few additional remarks on these assumptions.
Assumption 1.a.ii can be used to prove the existence of any SCE only in the case where βR ≥

1, which is typically missing in the literature. It simply says that lifetime preferences must have an
asymptotic “satiation point” x ∈ X. As these preference structure affects the underlying stochastic
process significantly, attracting equilibrium paths to the satiation point, we defer the treatment of this
case to future research. Thus, we focus in the traditional case βR < 1. That is, we can dispense with
Assumption 1.a.ii if the discount factor is sufficiently low.

Assumption 1.a.iii gives us some flexibility in the choice of A as it is standard in the literature.
Assumption 1.b, 1.c, 1.e, and 1.f insures sequential equilibrium prices are bounded above and bounded
below away from zero. This, in turn, will imply that in a SCE, debt is bounded above due to the
collateral constraint in (3) and bounded below as wealth will be finite at every possible node. The online
appendix contains examples of aggregators satisfying these restrictions (see the supplementary material
for section 2).

It is possible to relax Assumption 1.e and 1.f by restricting the superdifferential, the set which includes
all possible supergradients, of the concave mapping c on X to be compact. However, in applications,
preferences are assumed to be stronger than Assumption 1.g and continuously differentiable. In this case,
the strengthening of Assumption 1.e and 1.f can be done without loss of generality.

Also, when studying the existence of the RCE and of the GME, we can replace Assumption 1.f with
the assumption that preferences satisfy an standard Inada condition. This assumption imposes, in effect,
and Inada condition on A(c) in tradeables consumption. The point is when constructing RCE, the
characterization of stochastic equilibrium dynamics can be greatly sharpened (in particular, its uniform
interiority of tradeable consumption) allowing us to characterize the (strong) interiority properties of
stochastic dynamic equilibrium consumption paths. The complications comes in studying the SCE (and
in particular, the compactness of the stochastic dynamics). For this, we need Assumption 1 as stated.
The following remark formalizes this last paragraph. 25

Remark 2 For the RCE in section 3 and for applications in section 5 assumptions 1.b), 1.e) and 1.f)
can be replaced by assuming that U(x) is unbounded below and bounded above and that debt d has a
uniform upper bound.

Assumption 1.g is standard in the general equilibrium literature (see for instance Braido ([21])) . In
applications, Assumption 1.g will be insured by assuming that the set X is uniformly bounded below,
U : R −→ R and A : X −→ R are both increasing, concave, and twice-continuously differentiable, and
A(c) additionally supermodular.

To define the recursive equilibrium notions in this paper, we will characterize optimal decision in
primal form. That is, first order conditions are given by:

[cN (yt)][{βtU ′(A(c(yt))}{−A1(cT (yt))p(yt) +A2(cN (yt))}] = 0, yt − a.e (11)

[κ{yt + p(yt)yN} − d(yt)][U ′(A(c(yt))A1(cT (yt))

−Et(U ′(A(c(ytyt+1))A1(cT (ytyt+1))] = 0, yt − a.e
(12)

25Standard CRRA function for U with a CRRA parameter bigger than 1 insures the existence of a uniform lower bound
on aggregate consumption A. The monotonicity of U(A(c)) and the fact that X is bounded below by zero, implies that
cT , cN are both uniformly bounded below by zero; a fact that replaces assumption 1.f. The upper bound on d implies that
consumption is bounded above as assets has a uniformly bounded above under CRRA preferences (see lemma 1 in Braido
([21])). As consumption is bounded above we can dispense with 1.e). Moreover, with these preferences the stationary
system of equations formed by equations (8) and (10) has a finite number of roots for any finite d, Y T . By setting the
upper bound of d equal to the maximal root (across d, yT ), we can prove the existence of an ergodic equilibruim using the
arguments in section 4.
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We now state our first critical result for constructing the existence of SCE: 26

Lemma 3 Suppose βR < 1 . Under assumptions 1-a.i, 1-a.iii, 1-b to 1-g, if a SCE (c, d, p) exists, then:
(a) [Compactness provided existence] [c(yt), d(yt), p(yt)] ∈ K1 ×K2 ×K3 ⊂ <4 yt − a.e. and uniformly
in [y0, d0] ∈ Y ×K2, where K1 ×K2 ×K3 is compact, (b) [Necessity of first order conditions] the SCE
must satisfy (11),(12) .27

We mentioned that following the results in Rincon-Zapatero and Santos ([65]), Lemma 3 gives an
equivalent characterization of the SCE in terms of the equations (7)-(10) with well defined sequential
KKT. Also, notice that this lemma does not guarantee the existence of the SCE, which will be considered
in Theorem 4 below.

We also should mention, if we allow the cardinality of Y to be arbitrarily large, proving the existence
of this type of equilibria can be rather challenging (See, for instance, Mas-Collel and Zame, [46]). Once
the almost every where compactness of any “suitable candidate for equilibria” (c, d, p) is proved using
lemma 3, the existence of the SCE will be proved assuming that Y is a finite set. MasColell and Zame
([46]) needed to state by assumption the uniform compactness of the SCE for the case of uncountable
shocks. As it is natural, to show the existence of a recursive representation in this last case, we must
impose the same assumption.

Finally, we give sufficient conditions for the existence of the SCE.

Theorem 4 Suppose βR < 1 and the Y is a finite set. Under Assumptions 1-a.i,1-a.iii, 1-b -1-g, then:
(a) [Existence] there exist a SCE, (b) [Sufficiency of first order conditions] any [c(yt), d(yt), p(yt)] that
satisfy (11),(12) and cNt (st) = yN where yt holds µyT0 -a.e is a SCE. 28

3 Characterization of Recursive Competitive Equilibrium

We now consider the existence of RCE for this class of models. We begin by relaxing Assumption 1.f to
allow for a standard Inada condition when considering the case of RCE. This, along with Assumption 1.e
facilitates the proof that the implied SCE prices p = {p{St}} associated with any RCE will be bounded
away from 0 with strictly positive RCE tradeables consumption.29

Assumption 2. U(A(cT , cN )) satisfies the Inada condition for tradeables consumption: for c =
(cT , cN ), cNT > 0, limcT→0 U

′(A(c))A1(c)→∞.30

To construct RCE, we begin by representing the aggregate economy recursively on a minimal state
space. The minimal state space for the (set) of RCE will consist of current state variables summarizing the
individual state of a representative household and the aggregate state of the aggregate economy. In this

26All the proofs of the Lemmas and Theorems in the paper are in the Appendix.
27Note that, because of the compactness of the equilibrium, the transversality condition limt−→∞

βtEt(U ′(A(c∗t ))A1(c∗t )) = 0 is also satisfied.
28Because of the bounds on marginal utility in assumption 1, any equilibrium is compact. Then, the transversality

condition limt−→∞ βtEt(U ′(A(c∗t ))A1(c∗t )) = 0 can be added to the set of sufficient conditions without loss of generality.
29Existence of RCE can be proven without standard Inada conditions. See [64] for a discussion. The presence of Inada

conditions, though, facilitates constructing the least RCE by an explicit successive approximation algorithm (e.g., allows us
to iterate on our RCE operator from an explicit ”lower subsolution” relative to the least RCE).

30Notice, to meet Assumption 1(f) and still have an Inada condition as cT → 0, we can always take period utility to be
U(c) = u(c) + ηcT for η > 0 and sufficiently small, and u(c) satisfying the standard Inada conditions

lim
c→0

u′(c)→∞; limc→∞u
′(c)→ 0

11



economy, in any period of a RE, a household enters the period with an individual level of debt d ∈ D ⊂ R,
where D is compact31, as well as an endowment of tradeable and non-tradeable denoted by the vector
y = (yT , yN ), where y ∈ Y × {yNT }⊂ R2

++. So the individual state of the household is characterized
by the vector (d, y) ∈ D × Y. Further, a the beginning of any period, a typical household also faces
an aggregate economy in an aggregate state consisting of per-capita aggregate measures of each of these
individual state variables That is, the aggregate state variable is a vector S = (D,Y ) ∈ D×Y = S is
compact, D ∈ D is the per-capita level of aggregate debt, Y T (resp, Y N ) are the per-capita endowment

draws for tradeable (resp., non-tradeable) endowments with vector Y = (yT , yN ) ∈ Y × {yNT }⊂ R2
++.

Therefore, the state of a household entering any given period in a RCE will be denoted by s = (d, y, S) ∈
D×Y × S.

Next, we construct a recursive representation of the aggregate economy on the aggregate state space
S = (D,Y ) ∈ S. Anticipating the structure of RCE, the relative price for non-tradeable to tradeable
(denoted by p(CT )) in any RCE will be equal to equilibrium marginal rate of substitution between
non-tradeable and tradeable: i.e,

U2(CT , yN )

U1(CT , yN )
=
A2(CT )

A1(yN )
= p(CT ) (13)

where CT is some per-capita aggregate level of tradeable consumption, and we impose in any RCE
the fact that cN = yN = Y N , where Y T is constant (and we suppress the dependence of p on the
assumed constant level of Y N ). Under the supermodularity and concavity conditions in Assumption 1
on preferences relative to the composition U(A(c)), we have p(CT ) is increasing in CT .32 Using equation
(13), we can then generate a recursive representation of sequential prices p = {p{St}} by constructing
candidate laws of motion for the per-capita aggregate debt D, which used in conjunction with realizations
of endowment {Yt} generate realizations of sequential paths for prices p = {p(St)}∞r=.

To do this, define a collection of candidate socially feasible per-capita tradeable consumption CT :
S→ [0,cmax] ⊂ R+ denoted by Cf (S):

CT ∈ Cf (S) = {CT (S)|0 ≤ CT (S) ≤ cmax, CT is increasing in Y , decreasing in D, (14)

and jointly continuous, such that (1 +
κ

R
)yT − dmax +

κ

R
p(CT (S))yN > 0} (15)

where from the previous section, under Assumption 1, cmax is finite. Endow the space Cf with the
standard pointwise partial order ≥. Then, the space (Cf ,≥) is a nonempty partially ordered set. We
make a number of remarks about the space Cf that are critical to our RCE construction ultimately.

First, for CT (S) ∈ Cf , the implied aggregate debt mapping D′(S) = κ(Y T+p(CT (S))Y N is increasing
in S. Second, it is clear we must study the existence of RCE within a strict subset of functions C∗(S) ⊂
Cf (S), (where the construction of this subspace C∗(S) will be discussed in great detail momentarily).
There are many reasons for this fact. This is because there exist elements CT ∈ Cf which do not
admit admissible SCE price sequences {p(CT (St)}. In particular, for CT (S) ∈ Cf , we only impose
0 ≤ CT (S) ≤ cmax <∞, and as p(0)=0 for many parameterizations of preferences, p(CT ) = 0 whenever
CT (S) = 0 in any state. Therefore, it must be for an RCE price system p satisfy the basic conditions

31Under Assumptions 1(a)-(e), and 1(g), we can take D compact given results on existence of SCE in the previous section.
32For example, much of the applied literature uses Armington aggregators for the mapping A(c), so the relative price p

is just:

p(C) =
1− a
a

(
CT

Y N

)1/ξ

Under Assumption 1.g, for constants αT>0 and αN > 0, we could have utility such that the price function is:

p(C) =
1− a
a

(
CT + αT

Y N + αN

)1/ξ

such that marginal utility (and hence, prices) are bounded for all CT ≥ 0. Note, this special case is is important to keep
in mind when relating our multiplicity of RCE results in the sequel to Schmitt-Grohe and Uribe ([74]). Our results do not
require Armington aggregators for any of our theoretical results, rather simply preferences which satisfy Assumption 1.
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needed for any SCE, any RCE must have CT∗(S) > 0 for any state S, so pu ≥ p∗ ≥ pl > 0 in all states
S ∈ S.

Along the line of this last remark, the constraint in the definition of the space Cf requires that CT be
such that (1 + κ

R )yT − dmax + κ
Rp(C

T (S))yN > 0. This is imposed to guarantee a strict interior point in
the feasible correspondence for the household optimization problem when the collateral constraint binds.
This condition is needed for two reasons: (i) for the existence of a Slater condition for the dual Lagrangian
representation of the household’s dynamic programming problem, and (b) to guarantee a strictly positive
optimal tradeables policy (and hence, a strictly positive solution to the ”first stage” fixed point problem
in Lemma 7). In the second step operator that we use to construct RCE, we will use the monotonicity
of our RCE operator to construct a lower bound on aggregate tradeables consumption Cm(S) > 0 that
our operator maps Cm up (i.e, Cm ≤ A∗(Cm)).

Finally, we emphasize in the existing literature, there is no systematic approach to guaranteeing that
RCE tradeables consumption is strictly positive in all equilibrium states. Indeed, Schmitt-Grohé and
Uribe [74] emphasize how difficult guaranteeing this strict positivity condition is even near a steady-state
of the deterministic model. In this paper, for RCE, we use an iterative monotone operator approach to
the existence question to guarantee that least RCE that are strictly positive (hence, all RCE are strictly
positive).

3.1 The Household’s Dynamic Programming Problem in a RCE

We can now develop a dynamic programming representation of the household’s decision problem. For
any element CT ∈ Cf , we can identify the implied law of motion for per-capita debt D in a RCE by using
equilibrium versions of the household’s budget constraints and collateral constraints: i.e., the per-capital
debt evolves according to:

D′ = Φ(S;CT ) = inf[R{CT (S)− Y +D}, κ{yT + p(CT (S))yN}], CT ∈ Cf (16)

where R is the current interest rate. As D is the only endogenous aggregate state in this economy, in
conjunction with the primitives of the stochastic process on the endowment shocks Y , we now have a full
characterization of the stochastic transition structure of the aggregate economy in any candidate RCE
CT (S) ∈ Cf .

A typical household enters any period facing a fixed interest rate R > 0 such that βR < 1,33 with a
current level of individual household debt d ∈ D, current realizations of endowments y = (yT , yN ) ∈ Y,
and an aggregate economy in state S ∈ S whose continuation aggregate dynamics are parameterized by
a single function CT ∈ Cf . Then, when entering the period in state s = (d, y, S), the household’s feasible
correspondence is given by:

G(s;CT ) = {c ∈ R2
+, d

′ ∈ D| (17a) and (18) hold}

where

cT + p(CT (S))cN ≤ y − d+ p(CT (S))yN +
d′

R
(17a)

and
d′ ≤ κ(yT + p(CT (S))yN ) (18)

For CT ∈ Cf , under assumption 1, G(s;CT ) is a continuous correspondence in state s = (d, y, S) ∈
D×Y × S. As the aggregate economy is characterized by a law of motion on per-capita debt D′ using

33In this paper, we only consider the more common case in the literature where βR < 1. The case of βR = 1 has
been studied sometimes in the literature (e.g., Schmitt-Grohé and Uribe ([74]), but this case is delicate per the question
of existence of SCE and/or RE. The problem is compactness relative to stochastic dynamics (as opposed existence of
deterministic steady states). Similar issues arise when studying the case where βR ≥ 1. In Pierri and Reffett ([64]), we
consider both of these cases, and impose sufficient structure of SCE and RE to exist.
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(16), a recursive representation of the household’s sequential decision problem can be then be constructed
as unique value function V ∗(s;CT ) solving a Bellman equation for each CT (S) ∈ Cf :

V ∗(s;CT )) = max
x=(cT ,cN ,d′ )∈G(s;CT )

U(cT , cN ) + β

∫
V ∗(d′, y′, Y ′,Φ(S;CT );CT )χ(dy′) (19)

Under Assumption 1(a-e), 1(g), and Assumption 2, for each CT ∈ Cf , standard arguments yield the
following facts about solutions to equation (19). Noting the strict concavity of the primitive data under
Assumption 1(g), the unique optimal policy function associated with the solution to (19) is given by:

c∗(s;CT (S)) = arg max
x=(cT ,cN ,d′ )∈G(s;CT )

U(cT , cN ) + β

∫
V ∗(d′, y′, Y ′,Φ(S;CT );CT )χ(dy′) (20)

where by a standard application of Berge’s maximum theorem to the right side of (20) noting
the strict concavity of preferences under Assumption 1, the vector of consumption policies c∗(s;CT ) =
(cT∗(s;CT ), cNT∗(s;CT )) are jointly continuous in s, and the value function V ∗(s, S;CT ) is continuous
in s, strictly concave and decreasing in d for each (y, S), and increasing in y, each (d, S).

We can now formally state the definition of a RCE:

Definition 5 A minimal state space RCE in this economy is function for per-capita tradeables C T∗ ∈ Cf ,
a household value function V ∗(d, y;D,Y ;CT∗) that solves the functional equation in (20) at C T∗ ∈ Cf ,
with optimal solution for consumption c∗(s, CT∗) = ( cT∗(s, CT∗), cNT∗(s, CT∗)) such that (a) when
we have state s = (d, y, S) ∈ D×Y × S d = D, s = S, CT

∗
(S) ∈ Cf , CT (S) > 0 for all S ∈

S,cT∗(s, CT∗(s))=CT∗(s) > 0, cNT∗(s, CT∗) = yN , and the associated price p(CT∗(s)) > 0 and finite, (b)
cT∗(s, CT∗(s)) = 0 else.

We now make a few remarks about the derivation of the first order theory associated with this
dynamic programming problem for representing of the optimal policy function c∗(s, CT∗(s)). First,
relative to the primal dynamic programming problem in ((20)), by appealing to the duality results in
Rincon-Zapatero and Santos (([65]), Proposition 3.1 and Theorem 3.1), and noting that for CT ∈ Cf

(so we have a strict interior point for consumption in the household’s problem), one can check that
there exists a an appropriate Slater condition/interior point condition for the existence of sequential
dual representation of the household’s sequential primal optimization problem, and further there exists a
well-defined recursive Lagrangian dual formulation of (20) that sequential dual that can be characterized
as follows: for CT ∈ Cf , c ∈ C = {c ∈ R2

+|cT ∈ [0, cmax], cN ∈ Y N}, d′ ∈ D, we have:

v∗(s;CT ) = inf
λ,µ≥0

max
c,d′∈C×D

L(c, d′, λ, µ; s, v∗;CT ) (21)

where, the recursive dual Lagrangian is given by:

L(c, d′, λ, µ; d, y, S, v∗;CT ) = U(cT , cN ) + β

∫
v∗(d′, y′,Φ(S;CT ), y;CT )χ(dy′) (22)

+ λ{yT + p(CT (S))yN +
d′

R
− cT − p(CT (S))cN − d}

+ λµ{κ(yT + p(CT (S))yN )− d′}

where under Assumption 1(a-e), 1(g), and 2, v∗(s;CT ) = V ∗(s, CT ), noting the when CT ∈ Cf there is a
strict interior point on the feasible correspondence of the the recursive dual problem in (21), the recursive
dual is well-defined, finite, strong duality holds with the Lagrangian dual value equal to the Lagrangian
primal value, the Lagrangian dual solutions and values equal to those of the (20).

Further, this Lagrangian dual formulation in (22) admits a system of unique system of stationary
KKT multipliers, λ∗(s;CT ) and µ∗(s;CT ) associated with the infinite horizon sequential dual program
that dualizes the household’s sequential primal optimization problem in (4) from all initial conditions.
Importantly, the associated KKT solutions {(λ∗(s;CT ), µ∗(s;CT )) ; (cT∗(s;CT ), cN∗(s;CT ), g∗(s;CT ))}
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in (22) are the unique saddlepoints of (21) dual with value function V ∗(s;CT ) = v∗(s, CT ), with the
envelope theorem for (20) in d given by:

∂dv
∗(s;CT ) = λ∗(s;CT )

= ∂dV
∗(s;CT )

= U ′(A(cT∗(s;CT ), cN∗(s;CT )))A1(cT∗(s;CT )

where (cT∗(s;CT ), cN∗(s;CT )) is the vector optimal solutions for consumption goods for the primal
dynamic program in (19).

Using these facts, the system of first order conditions (necessary and sufficient) for our problem in
(22) can be stated as follows: for stationary KKT multipliers (λ∗(s;CT ), µ∗(s;CT )), the optimal policy
functions c∗(s, CT ) = (cT∗(s;CT ), cN∗(s;CT )), and d′∗(s;CT ) = g∗(s;CY )) satisfy the following:

λ∗(s;CT ) = U ′(A(c∗(s;CT ))A1(c∗(s;CT ) (23)

p(CT (S)) =
A1(c∗(s;CT ))

A2(c∗(s;CT ))
(24)

{ 1

R
− µ∗(s;CT )}λ∗(s;CT ) = β

∫
λ∗(d′, y′,Φ(S;CT ), y′;CT ) (25)

{d′ − κ{p(CT (S))yN + yT }µ∗(s;CT ) = 0, µ∗(s;CT ) ≥ 0 (26)

where the law of motion on individual debt in (25) is given by:

d′∗(s;CT ) = inf{R{cT∗(s, CT )− yT − p(CT (S))yN + d}, κ{yT + p(CT (S))yN} (27)

and the law of motion on per-capita debt D′ in (25) is given by Φ(S;CT ) in equation (16).

3.2 The Structure of Optimal Tradeables Consumption

When developing our RCE operator in a moment, it proves useful to characterize first how the structure
of the optimal tradeable consumption policy varies over the two “regimes” (i.e., equilibrium states where
the household is collateral constrained versus equilibrium states where household is not collateral con-
strained). To do this, first note for any household who enters any period in state s = (d, y, S) ∈ S, after
we impose the RCE condition that c∗N (se) = yN = Y N , the household’s budget constraint in (17a) is:

c∗T = yT − d+
d′∗

R
(28a)

If the per-capita tradeable consumption is given by CT ∈ Cf , the law of motion on optimal level of debt
in equilibrium for the representative household is:

d′∗(s;CT ) = inf{R{cT∗(s, CT )− yT + d}, κ{yT + p(CT (S))yN} (29)

where cT∗(s;CT (S)) is the household’s optimal tradeable consumption. Using (23) into (25), we can then
define the mapping :

Z∗p (x, s;CT ) =
U1(x, yN )

R
− β

∫
U1(cT∗(d′, y′, D′, Y

′
; CT )χ(dy′) (30)

where the evolution of per-capita debt D′ in (30) is given by equation (16), and the evolution of individual
optimal debt for d′ is given by (27). If we let x∗(s;CT ) > 0 be the implicit solution of the following:

Z∗p (x∗(s;CT (S)), s;CT (S)) = 0
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which under Assumption 1(a)-(e), 1(g) and Assumption 2 is well-defined as a function continuous in
(d, y), the implied optimal debt associated with a tradeable consumption plan x∗(s;CT∗) would be:

dx∗(s;C
T ) = R{x∗(s;CT )− yT + d} (31)

If the debt level dx∗(s, C
T ) in (31) satisfies dx∗(s;C

T ) < κ{yT +p(CT (S))yN )}, the household is not
debt-constrained in state s = (d, y, S) ∈ S× S for the aggregate tradeable policy CT (S) ∈ Cf , as the
collateral constraint allows for strictly positive consumption, by the Inada condition, the optimal policy
for tradeables consumption will also be positive and given by: 34

cT∗uc (s;CT ) = x∗(s;CT ) > 0 (32)

Alternatively, if dx∗(s, C
T ) ≥ κ{yT + p(CT (S))yN}, the debt constraint binds (or is saturated) in this

state s, and the optimal tradeable consumption

cT∗c (s;CT (S)) = (1 +
κ

R
)yT − d+

κ

R
p(CT (S))yN > 0. (33)

where strict positive follows from CT ∈ Cf which guarantees in all states (yT , yNT ) the level of debt d
must be such that cT∗c (s;CT (S)) > 0. Note here, the Euler equation in (23) binds with µ∗(s;CT ) > 0.

Combining these arguments, the optimal policy for tradeables consumption then has the following
form: for any s = (d, y, S):

cT∗(s;CT ) = inf{cT∗uc (s;CT ), cT∗c (s;CT )} > 0 (34)

where the infimum is computed at each (s, CT ) preserves joint continuity over individual states (d, y) for
each S to cT∗(s;CT ) by a standard application of the Berge’s maximum theorem (noting the compactness
of the state space). Additionally, one can show cT∗(s;CT ) decreasing in d, increasing in y, each S ∈ S.35

We can use this structure of the optimal tradeable policy over the “two collateral constraint” regimes to
develop our two step monotone approach to constructing RE in the next section.

One final remark: the policy cT∗(s;CT ) in (34) is not increasing in CT (S) for each s. That is, the
pecuniary complementarities in these models relative to RCE are induced by the equilibrium structure
of the price-dependent collateral constraint. Indeed, as we shall show in a moment, the existence of
pecuniary complementarities in these models is induced by the collateral constraint in equilibrium and
cannot be disentangle from the fixed point/equilibrium construction we shall use to construct the set
RCE.

3.3 Existence and Comparative Statics of RCE

Motivated by the structure of the optimal tradeable consumption policy in equation (34), we now define
our approach to constructing RCE. The challenge of construction a RCE operator models in this model,
we need to address the complication of structural change over different equilibrium “regimes” (e.g.,
collateral constrained states versus unconstrained states). In this since, our equilibrium operator will
model RCE tradeable consumption as a “coupled” fixed point of a two-step operator that in its definition
explicitly keeps track of the two equilibrium regimes that characterize the stochastic equilibrium dynamics
of Sudden Stop models. Intuitively, in the first step of this fixed point procedure, we compute the RCE
tradeable decision rule conditional on holding the “pecuniary externality” fixed at the relative price of
non-tradeable parameterized by tradeable consumption level CT (S). This first step mapping will turn out
to be a order continuous contraction in an appropriately define partially ordered complete metric space,
and will have a unique strictly positive fixed point for each fixed CT (S). By a fixed point comparative
statics result for contractions, this strictly positive fixed point will be continuous in the topology of

34If if dx∗(s;CT ) ≤ κ{yT+p(CT (S))yN ), this implies the collateral constraint is either slack or saturated (but not binding)
at this state s. This, in turn, implies in equation (25) that the KKT multiplier on the debt constraint is µ∗(s;CT ) = 0, and
Zp∗ (x, s;CT ) is the actual FOC for the household after imposing cNT∗ = yN in a RE.

35In the appendix, see the proof of Lemma 7.
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pointwise convergence in CT (S) (and hence, order continuous in pointwise partial orders).Then, the RCE
is computed in the second step noting that this strictly positive fixed point in the first step is order
continuous on CT (S). Therefore, using a order-theoretic fixed point constructions we can compute the
“least” and “greatest” RCE collateral constraint consistent with this first step fixed point, which in turn
induces the set of actual RCE via its coupling with first stage fixed point.

To begin our construction of RCE, motivated by the structure of the household’s policy function in
this model, assume the structure of the (unknown) RCE tradeable consumption “tomorrow” is given by
the following mapping when d = D, and y = Y :

C(c, CT )(d, y, S) = inf{c(d, y), CTc (D,Y,CT (S))} (35)

where in the constrained state, when CT ∈ Cf , tradeables consumption is CTc = (1 + κ
R )Y T − D +

κ
Rp(C

T (D,Y )Y N > 0 and depends only on CT (S) the per-capital level of tradeable consumption. Then,
as with the policy function, the mapping for tomorrow’s ”consumption” C(c, CT )(d, y, S) is constructed
as the pointwise infimum of two unknown functions: (i) c(d, y) ∈ Cp(S), where Cp is the space of candi-
date functions for tradeable consumption in states where the household is “conditionally” not collateral
constrained, and (ii) CT ∈ Cf which tradeables consumption tomorrow when households are collateral
constrained. Per the latter function, notice CT (S) parameterizes a “guess” at the equilibrium collateral
constraint (and, hence the per-capital equilibrium collateral-constrained consumption CTc (D,Y,CT (S))
. Given this guess at “tomorrow’s” tradeable consumption, we use the household’s Euler inequality to
compute the implied level of tradeable consumption “today” in equilibrium. We denote this implied
mapping “today” by A(c, CT ))(d, y, S) when d = D and y = Y .

We will solve the resulting functional equation in two steps. To formalize our construction, we begin
by defining the first step domain of our two-step RCE operator.36 For the first step of our construction, we
shall fix the “second step” function at CT ∈ Cf , and take the domain of our the operator A(c;CT )(d, y, S)
the set of functions c = c(d, y) ∈ Cp(De×Ye), where:

Cp(D
e×Ye)= {c(d, y)|0 ≤ c(d, y) ≤ yT − d+ (dMax/R), (36)

c(d, y) = c̃(d, y, d, y), c̃(d, y; d, y) decreasing in d,

increasing in y,

s.t. (*) for a fixed y, − d′ = R(yT − d− c(d, y, d, y)) decreasing in d, increasing in y}

where dMax is the maximal level of debt as shown in section 2, and we use the notation se = (d, y, d, y) ∈
De×Ye to make clear the domain of any RE function is defined over a diagonal of individual state
variable s = (d, y, S) :

De×Ye= {(d, y)| (d, y) = (d, y,D, Y ), d = D, y = Y } = S

where by construction se ∈ De×Ye= Se is an equilibrium state of the household. We endow Cp(S
e
) with

its relative pointwise partial order.

Lemma 6 The space Cp(S
e
) is: (a) an equicontinuous collection of continuous functions (b) a nonempty

complete lattice in its relative pointwise partial order.

We remark that for any function c(d, y) ∈ Cp, the implied policy function for debt d′(d, y) is decreasing
in y, and increasing in d, so the elements of the space Cp(D

e×Ye) are consistent with the fact that when
the household is not debt constrained, so d′(d, y) works as a consumption smoothing device for household
relative to the (tradeables) endowment shocks.

To define our two-step RCE operator then, we first rewrite Euler inequality Z∗p in (30) for the household

in a RCE as follows: for any c(d, y) ∈ Cp, when c(d, y) > 0, CT ∈ Cf , using C(d, y; c, CT (d, y)) is defined

36Note, the definition of the second-step domain then will “couple” with the definition of the first step operator and its
domain. For the moment, we simply take the second-step domain to have CT ∈ Cf where Cf was defined earlier.
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in (35), imposing equilibrium between individual and aggregate states d′ = D′ and y′ = Y ”, we can define
the mapping Z∗uc which computes the equilibrium tradeables consumption solution if in the equilibrium
state space by se = (d, y, d, y) ∈ Se the household is not collateral constrained:

Z∗uc(x, s
e; c, CT ), =

U1(x, yN )

R
− (37)

β

∫
U1(c(R(x− yT + d), y′, CTc (R(x− yT + d), y′)χ(dy′)

where we obtain Z∗uc from Z∗p in (30) as follows: (a) we have assumed se is not collateral constrained

(which we will discuss how to verify when this assumption is correct in a moment), and (b) set x = CT (S)
pointwise in equilibrium on Z∗p for the updating of the aggregate debt state in the it’s aggregate law of
motion. Relative to (b), this substitution is critical as delivers precisely the appropriate equilibrium single
crossing condition between the household’s tradeable consumption and the aggregate level of tradeable
consumption in any RCE that will allow use to obtain a monotone operator for computing RCE.

Next, to define then our two-step RCE operator, for any c(d, y) ∈ Cp, c > 0, and CT ∈ Cf , as
Z∗uc(x, s

e; c, CT ) is strictly decreasing in x, increasing in (c, CT , y), and decreasing in d, and we can
compute function x∗uc(s

e; c, CT ) > 0 when c(d, y) > 0 implicitly in this expression:

Z∗uc(x
∗
uc(s

e; c, CT ), se; c, CT ) = 0 (38)

which is well-defined as a function as Z∗uc is strictly decreasing under Assumption 1, is continuous in
its first two arguments, all the parameters, and pointwise continuous (topology of pointwise convergence)
in (c, CT ) for each se,37 and under Assumption 1 plus Assumption 2, the root x∗uc(s

e; c, CT ) > 0. By a
standard comparative statics argument, under Assumptions 1 and 2, this root x∗uc(s

e; c, CT ) is increasing
in (c, CT , y) and decreasing in d.

Then following the construction in the previous section for the optimal tradeable consumption policy,
the implied debt level associated with the tradeable consumption x∗uc(s

e; c, CT∗) will be:

dx∗uc(s
e; c, CT ) = R{x∗uc(se; c, CT )− yT + d} (39)

If the debt level dx∗uc(s
e, c, CT ) in (39) satisfies dx∗uc(s

e; c, CT ) ≤ κ{Y T+p(CT (S))Y N ), the household
is not debt-constrained state se = (d, y, d, y) ∈ S× S for (c, CT ), 38 and we have:

Auc(c;C
T )(se) = x∗uc(s

e; c, CT ) > 0 (40)

where strict positivity of Auc(c;C
T )(se) follows from the fact that for CT ∈ Cf strictly positive con-

dition is possible in all states, and hence in the unconstrained states, the Inada condition implies
xuc
∗(se; c, CT ) > 0.
Alternatively, if dxuc

∗(s, CT ) > κ{yT + p(CT (S))yN , the debt constraint binds in state s, and the
optimal tradeable consumption is

Ac(C
T )(S) = (1 +

κ

R
)Y T −D +

κ

R
p(CT (S))yN > 0. (41)

Then our operator for (c, CT ) ∈ Cp ×Cf will be defined as:

A(c, CT )(se) = inf{Auc(c, CT )(se), Ac(C
T )(S)} when c > 0 (42)

= 0 else

We now are ready to construct the set of RCE in two steps. In Lemma 7, we show for each fixed
CT ∈ Cf , there is a unique strictly positive fixed point c∗(CT )(se) for tradeables consumption of partial
mapping A(c;CT , β, κ,R)(se) ∈ Cp (where in the Lemma, we now make explicit how the operator varies in
the deep parameters (β, κ,R)) eventually RE comparative statics will be of interest in our main theorem).

37For the situation that c = c(d, y) = 0 in any state, take x∗uc(s
e; c, CT )=0. We should also remark, when computing the

of implied debt for x∗uc(s
e; c, CT ) when c = c(d, y) > 0, if the collateral constraint is not binding, x∗uc(s

e; c, CT ) > 0.
38Notice, when the debt x∗uc (se; c, CT ) = κ{Y T + p(CT (S))Y N ), the collateral constraint is saturated, but not binding.

In this case, the implied KKT multiplier on the collateral constraint would be 0.
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Lemma 7 Under Assumptions 1(a-e), 1(g), and 2, for each CT (S) ∈ Cf , and S ∈ S, for the opera-
tor A(c;CT , β, κ,R)(se), (a) there exists a unique strictly positive fixed point c∗(d, y, CT (S), β, κ,R)(se)
in Cp(S); (b) this fixed point can be computed by the decreasing chain of successive approximations
inf An(cmax;CT (S), β, κ,R)(d, y) ↘ c∗(CT (S), β, κ,R)(se); (c) c∗(CT , β, κ,R)(se) is a monotone opera-
tor on Cf (D

e×Ye), (d) c∗(CT , β, κ,R)(se) is decreasing in (β,R), and increasing in κ.

Next, construct a new operator using the fixed point comparative statics of the first-step (unique)
strictly positive fixed point c∗(CT , β, κ,R)(d, y). The domain for second step mapping will be denoted
C∗(D

e×Ye), and defined as follows:

CT ∈ C∗(D
e×Ye)= {CT (d, y)|CT ∈ Cf , CT ∈ [Cm(S), cmax] (43)

C(d, y, d, y) = inf{c∗(d, y, CT (D,Y )), CT (D,Y )}, d = D, y = Y

c(d, y;CT (D,Y )) ∈ Cp∗(d, y) for fixed (D,Y ), CT (D,Y ) ∈ Cf st D′(D,Y ) = κ(Y T + p(C(D,Y ))Y N }
(44)

is increasing in Y, decreasing in D} (45)

where Cm(S) is a strictly positive function (hence, any fixed point in C∗ has strictly positive tradeables

consumption in all states). Observe the elements of the space C∗(D
e×Ye) ⊂ C

f
(D

e×Ye) have the exact
same structure as those in Cp over individual states, but drops the condition (*) in (36) governing RE
debt dynamics when collateral constrained binds. This reflects the fact that when the collateral constraint
binds in equilibrium, the properties of the implied RE debt dynamics reverse in order to those implied
by c∗(d, y, CT (S)) ∈ Cp ( the unconstrained regime for fixed CT ).

We now state an important property of C∗(D
e×Ye)

Lemma 8 C∗(D
e×Ye) is a nonempty complete lattice.

To define the second step operator we use the unique positive fixed point of the first step operator,
and define the following nonlinear operator on the space C∗: when (d, y) = (D,Y ) = S, CT ∈ C∗,

A∗(CT ;β, κ,R)(se)) = inf{c∗(CT ;β, κ,R)(se), Ac(C
T ;κ,R)(se)} (46)

where we now make the dependence of the operator A∗ on the deep parameters (β, κ,R) explicit. We
now have the following result.39

Theorem 9 Under Assumption 1(a-e), 1(g), and 2, there exist (i) a nonempty complete lattice Ψ∗(β, κ,R)
of RCE for tradeables consumption in C∗ (i.e., a nonempty complete lattice of strictly positive tradeables
consumptions in C∗) , with the least and greatest elements of Ψ∗(β, κ,R) . Further, the least and greatest
RCE can be computed by successive approximation as follows:

0 < inf
n
A∗n(Cm;β, κ,R)(se)→ C∗l (β, κ,R)(se)) = ∧Ψ∗(β, κ,R)(se)

≤ ∨Ψ∗(β, κ,R)(se) = C∗g (β, κ,R)(se) = sup
n
A∗n(cmax;β, κ,R)(se) < cmax

where both least RCE ∧Ψ∗(β, κ,R)(se) = C∗l (β, κ,R)(se)) and greatest RCE ∨Ψ∗(β, κ,R)(se) = C∗g (β, κ,R)(se))
are each increasing in κ, and decreasing in (β,R), and the lower subsolution Cm is the least element of
C∗ (i.e., Cm = ∧C∗.)

39Using the recent results generalizing the Tarski-Kantorovich theorem to any initial iterate in the papers of Olszewski
[58] and Balbus, Olszewski, Reffett, and Wozny ([8]), in our setting we can provide tight fixed point bounds on iterations of
our fixed point operator A∗(C) from any initial C0 ∈ C∗. We discuss related matters when we provide iterative monotone
RCE comparative statics in Theorem 10 later in this section.
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We make a critical remark about the proof of Theorem 9. Using the monotonicity of our operator
A∗(C;β, κ,R)(se), we are able to construct by successive approximations of our operatorA∗(C;β, κ,R)(se)
from the function CT = 0 and any initial state se such that ∧yT − d ≥ 0 the least element Cm in the
definition of the space C∗. This fact is of critical importance in applied work as we provide an explicit
(and intuitive) computational method for computing the least element of the space C∗. Importantly, it
turns out that given the order continuity of our operator A∗(C;β, κ,R)(se), we then can show that the
element Cm = ∧Ψ∗(β, κ,R)(se) (the least RCE). Hence, our approach in the paper provides a systematic
approach guaranteeing that all RCE are associated with strictly positive tradeables consumptions.

Theorem 9 provides sharp RCE comparative statics on the ”low” and ”high” borrowing equilibria
for this class of economies. These equilibrium comparative statics results are obtained by an application
of standard Tarski-Kantorovich principles applied to the operator A∗(CT ;β, κ,R). Our RCE results on
least and greatest RE formalize the multiplicity result in Schmitt-Grohé and Uribe ([73], [74]). What
is clear from our approach is that relative to the set of RCE is that the issues raised in Schmitt-Grohé
and Uribe ([73], [74]) are global, and not related per sa to the deterministic steady-state. That is, from
any state where collateral constraints bind (not just near steady state), in the stochastic RE (not just
the deterministic version of the model), multiplicities of RCE are possible (and, in particular, “low” and
“high” borrowing equilibria are possible).

We can see for the case of RCE how their argument works in a global sense. In particular, in any
state equilibrium state se where the collateral constraint binds, we have our operator A∗(CT )(se) given
by

A∗(CT )(se) = Ac(C
T )(s) = (yT + yNT p(CT (S)))(1 +

κ

R
)− d

Consider the following mapping when d = D, y = Y :

Z∗c (x∗(d, y, S, CT ), CT (S); d, y, S) = x∗(d, y, d, y, CT )− (yT + yNT p(CT (S)))(1 +
κ

R
)− d = 0

where our operator is defined as Ac(C
T )(se) = x∗(d, y, d, y;CT ) when the collateral constraint binds in

a state se. Further, evaluating Z∗c at Ac(C
T )(se) = x∗(d, y, d, y) = CT∗(d, y) when d = D and y = Y,

and now noting the dependence of the mapping on the ratio parameters κ/R, we see that unless p(·) is
such the for all parameters κ, R, and yN the mapping

Zc(x, x, y, d;κ/R) = x− (yT + yNT p(x))(1 +
κ

R
)− d = 0 (47)

has unique roots x∗(d, y, d, y;κ/R) ≥ 0, there will be multiple RCE at this state se.40 Also, notice in the
case of multiple roots x∗(d, y, d, y;κ/R) to equation 47, if we define the correspondence

X∗(d, y, d, y;κ/R) = {x∗(d, y, d, y ≥ 0|Zc(x, x; y, d;κ/R) = 0}

at equilibrium state se where the collateral constrain binds, this correspondence X∗(d, y, d, y;κ/R) can
easily be show to be well-defined (e.g., by an application of the intermediate value theorem) and have
a least and greatest element (as the correspondence X∗(d, y, d, y;κ/R) ⊂ R+ is chain-valued, nonempty
and compact-valued under assumption 1 and 2, hence has a least and greatest element). This also
implies in equilibrium states se where the collateral constraint binds, as collateral constraints are price-
dependent and p(C) is increasing in C, the equilibrium collateral constraints will be ordered relative to
least and greatest RE tradeable consumption levels. We show then in our main theorem above that as
Schmitt-Grohé and Uribe ([74]) suggest, for RCE, we will have (globally) “low borrowing” (associated
with “least” RE tradeable consumption) and “high borrowing” (associated with “greatest” RE tradeable
consumption ) in any equilibrium state se, and these least and greatest RE will be distinct in states
where the equilibrium collateral constraint binds and the correspondence X∗(d, y, d, y;κ/R) is not a
single-valued.

40Schmitt-Grohé and Uribe ([74]) give a local sufficient condition near the deterministic steady-state for this to be case
for the case that the utility aggregator A(cT , cN ) is an Armington aggregator and near a steady-state. But clearly, their
idea about the source of multiplicity applies in any equilibrium state se. That is, generally Zcc(x, x; y, κ/R, d) is not either
strictly increasing or decreasing in x at each se under Assumption 1 (hence, roots are unique)
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We conclude our discussion of existence of RCE by showing that we can construct RCE comparative
statics for any RCE C∗(β, κ,R)(se) ∈ Ψ∗(β, κ,R)(se). We do this using the results in a recent paper by
Balbus et al ([9]) who propose a generalized iterative procedure for order continuous operators equation in
complete lattices that provide comparative fixed point bounds for any fixed point in the deep parameters
of the operator. The results in that paper apply in our context (e.g., see ([9], Proposition 2).

More specifically, consider the following lower iterative process from any initial fixed point C∗(β, κ,R) ∈
Ψ∗(β, κ,R) ⊂ C∗(D

e×Ye), where C0 = C0,γ
∧ = C0.γ

∨ = C∗(β, κ,R) for all γ ∈ N. Then, compute the
following sequences of iterations:

Ck+1,γ
∧ = A∗(inf{Ck,γ∧ , ..., Ck−γ,γ∧ };β′, κ′, R′)

where for l > k, just assume Ck−l,γ∧ = C0,γ
∧ . Then, for any γ, compute the order limits:

lim inf
k
Ck,γ∧ =C∗∧(β′, κ′, R′) ∈ Ψ∗(β′, κ′, R′)

where the limit exists in C∗(D
e×Ye) as C∗(D

e×Ye) is complete lattice, and C∗∧(β′, κ′, R′) ∈ Ψ∗(β′, κ′, R′)
is a fixed point A∗(CT ;β′, κ′, R′) as A∗ is order continuous. Then we have the following iterative monotone
comparative statics result for any initial RCE C∗(β, κ,R) ∈ Ψ∗(β, κ,R) at the parameters (β, κ,R):

Theorem 10 For any C∗(β, κ,R) ∈ Ψ∗(β, κ,R) ⊂ C∗(D
e×Ye), and (R′, β′) > (R, β), and κ′ > κ,

C∗(β, κ,K) ≤ C∗∧(β′, κ′, R′) ∈ Ψ∗(β′, κ′, R′).

3.4 Uniqueness of RCE

We now consider the question of sufficient conditions for uniqueness of RCE in this model. For this, we
reconsider Lemma 7 and Theorem 9 under the following additional assumption:

Assumption 3: Assume the consumption aggregator A(c) is such that for the associated p(x) =
A1(x,y

N )
A2(x,yN )

, the mapping Zc(x, x; y, d, κ/R) = 0 in equation 47 has a unique root x∗(d, y, d, y;κ/R).

Under Assumptions 1-3, we can now show (as a corollary of Lemma 7) we can sharpen our existence
theorem on RCE (Theorem 9) to show RCE is unique. Before we state our result, first solve the collateral
constraint for the level of tradeables consumption imposed in any RCE by a binding collateral constraint
in any equilibrium state se = (d, y, d, y) by using equation 47: that is, compute pointwise cT∗c (d, y) =
x∗(d, y, d, y) in

Zcc(x
∗(d, y, d, y), x∗(d, y, d, y), y, d) = (48)

x∗(d, y, d, y)− (yT + yNT p(x∗(d, y, d, y)))(1 +
κ

R
)− d = 0

which is unique by Assumption 3. Then, we have the following theorem

Theorem 11 Under Assumption 1(a-e), 1(g), 2, and 3, the unique RCE is c∗(d, y) = inf{cT∗(d, y), cT∗c (d, y)} where
for any c ∈ Cp, c > 0, with

A∗n(c)(d, y) = cT∗(d, y)

.

A few remarks on our uniqueness result. First, in the sequel of the paper, section 5, we will discuss
examples of aggregators A(c) such that Assumption 3 is satisfied (e.g., A(c) is quasi-linear or log). We do
want to emphasize that in the existing literature when quantitative versions of this model are studied, A(c)
is Armington/CES aggregator. In this case, for typical parameterizations of this mapping, Assumption
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3 will not be satisfied, and multiple RCE will exist (e.g., see the excellent discussion in Schmitt-Grohé
and Uribe ([74])).

Second, when using our two-step construction in theorem 4, our iterations on our fixed point operator
(which was defined at the second-step of the construction) could start from any CT in the space C∗

(including CT = 0). The reason is in the first step construction, the unique fixed point of the mapping
was strictly positive in all states (imply the second step fixed point operator had no trivial fixed points).

In our uniqueness argument for Theorem 11, things are different. Because of Assumption 3, we know
what the maximal consumption is in any collateral constrained RCE (i.e., cT∗c (d, y)). So the second step
of the RCE construction is not needed. In this case, everything can be done with the first step operator
which just constructs the unique cT∗(d, y) which is the RCE consumption in the “unconstrained” states.
Then the RCE consumption is the infimum pointwise by state over the two consumption functions.

4 Generalized Markov Equilibrium (GME)

The previous section proves the existence of a RCE representation of SCE that is time-invariant and
defined on a minimal state space. In this section we will explore the difference between GME and RCE.
The GME approach will have important implications from a numerical perspective. GME representa-
tions of SCE differ substantially from those in section 3, and they are deeply connected to recursive
representations in Duffie, et. al. ([31]) or Feng, et. al. ([33]).

While the results in section 3 can be used to numerically approximate the SCE and to perform
accurate numerical comparative statics exercises, we have been silent about simulations in these class of
models. As discussed in Santos and Peralta- Alva ([67]), the starting point of any simulation experiment
for a stochastic dynamic equilibrium model is an appropriate stochastic steady state notion. The most
frequent stochastic steady notion used in the literature is an invariant measure (IM) for some recursive
representation of the sequential equilibrium. Heuristically, an IM gives a sense of probabilistic time
invariance. That is, if {xt} is a sequence of random variables generated from some Markov process and
xt is distributed according to an IM µ, then xτ will be distributed according to µ for τ > t.

This section introduces the notion of GME, which has an expanded state space when compare to the
results in section 3. This equilibrium is a slightly modified version of the one in Feng, et. al. ([33]). We
carefully select the additional state variable with respect to the RCE to guarantee the existence of an
appropriate stochastic steady state. Moreover, a GME is defined using the set of equations characterizing
the SCE. Thus, the additional state variable and the direct connection with the SCE brings more memory
into the model at the cost of allowing additional sources of equilibrium multiplicity. This paper proves
that it is possible to refine the equilibrium set in a GME by picking a selection which insures the existence
of an IM. In this sense, we are imposing long-run restrictions in order to refine the equilibrium set.

Provided a stationary recursive representation, the existence of an IM implies that simulations ob-
tained from the SCE can be approximated by a time invariant and finite set of functions, abstracting from
numerical errors. 41 This is possible by means of a law of large numbers, which in turn requires the IM to
be ergodic. From a practical perspective, ergodicity insures roughly speaking that “averages converges”.
That is, the existence of a stationary recursive representation, as the one derived in section 3, is not
enough to insure the desired convergence. For this purpose, we must use a well defined (i.e., ergodic) law
of large numbers. The ergodicity of the IM guarantees that the Cesaro average of any simulation starting
from a “nice” initial condition will converge to an expected value computed using the stochastic steady
state distribution. This last fact allows to connect the model with observed (time independent) stylized
facts.

As discussed in Pierri ([61]), existence of an IM and its ergodicity in this type of models are related
to the cardinality of the set of exogenous shocks. We prove the existence of an ergodic IM for economies
with a finite set of shocks under milder assumptions than those studied in Pierri ([61]). This is possible
because of the monotonicity properties of the (minimal state space) RCE in endowment shocks combined
with an occasionally binding (collateral) constraint. Under this setting it is possible to show that the

41As pointed out in Santos and Peralta Alva ([67]), truncation and interpolation errors could accumulate over time if
they are not “controlled”.
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model described in section 2 has an “irreducible atom”, which is used in the stochastic process literature
to prove the existence of an IM. The ergodicity of this measure follows from its uniqueness. While
these results are enough to insure convergence in the sense implied by a law of large numbers, finding
the appropriate set of initial conditions maybe problematic as the process may have divergent paths.
Fortunately, we can characterize the set of appropriate initial conditions and at the same time prove the
existence of an ergodic IM.

4.1 A convenient recursive representation

In this subsection we derive the set of Generalized Markov Equilibria. As this equilibrium have a bigger
state space when compared with the recursive representation presented in section 3, it is more flexible (see
Kubler and Schmedders ([40] for a discussion). We are interested in preserving the structural properties
(i.e., differentiability of the value function, etc.) proved before as they will be useful to derive the results
in this section. One of the purposes of writing the minimal state space equilibrium is to refine all possible
GME in order to build a selection which replicates the observed behavior. It turns out that, if we restrict
attention to a finite set of shocks, it is easy to characterize a “regeneration point” for the global stochastic
dynamics in the model using the GME. This is a first step in order to find a recurrent structure that
is robust to the presence of multiple equilibria, which typically generate discontinuous selections. The
properties of the endogenous variables derived in the RCE for the unconstrained case (i.e. when the
collateral restriction does not hold with equality) will be useful to construct trajectories with positive
probability which can be used to prove ergodicity.

As can be seen in section 2, any SCE can be characterized using a set of primal first order conditions
(as inequalities) which do not depend on Lagrangian multipliers. The usefulness of this representation
will be clear in this subsection. Moreover, the existence of well behaved envelopes for the value function
in the RCE implied that a SCE can be characterized recursively by the following equations:

[−A1(cT )p+A2(cN )] = 0 (49)

[κ{yT + pyN} − d+][U ′{A1(yT + d+R
−1 − d)} − E(m+)] = 0 (50)

d+ ≤ κ{yT + pyN} (51)

where m = ∂ V
∂ d is the envelope of the value function in the household’s problem of the minimal state

space representation of SCE, with U ′ ≡ U ′(A(yT + R−1d+ − d; yN )). Given the compactness of the
equilibrium set, the results in Feng, et. al. imply that equations (49) and (50) can be used to derive
a correspondence, Φ, the so-called equilibrium correspondence, which contains the entire set of GME
representations of SCE, where Φ : Z × Y 7−→ Z with z = [d yT yN cT cN p m] with z ∈ Z,
yT ∈ Y and Z compact.

Notice, we are restricting m to be an envelope of the value function from some RCE. This restriction
is required to show ergodicity as the proof involves a path for d+ with some qualitative properties which
follow directly from the optimization problem in the RCE. In this sense, the choice of an additional state
variable is critical. Moreover, the results in section 3 insure that equation (50) under this restriction can
be used to characterized any SCE. Thus, when the (collateral) constraint hits, we know that U ′{A1(yT +
R−1κ{yT + pyN} − d)} ≥ E(m+) and the equilibrium for any given period can be computed using the
following set of equations:

p =
A2(yN )

A1(yT +R−1κ{yT + pyN} − d)
(52)

cT = yT +R−1κ{yT + pyN} − d (53)
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cN = yN (54)

m+ = U ′A1(cT+) (55)

U ′{A1(yT +R−1κ{yT + pyN} − d)} ≥ E(m+) (56)

Given (yT , d), the remaining variables in z can be computed using (52) to (55) as long as U ′{A1(cT )} ≥
E(m+). As the recursive equilibrium notion in Feng, et. al. is computed “backwards” (i.e. given “z+”
we obtain z), the Euler equation imposes a looser restriction to the system when compared to the non-
binding case. This fact turns out to be very useful to prove the ergodicity of the process in the finite
state space case. We are now in position to formally define a GME.

Definition 12 Generalized Markov Equilibrium (GME) Let Z be the compact set which contains any
state zs that solves (49), (50) and (51) backwards with s = 0, 1, ... . The equilibrium correspondence
Φ mapping Z × Y → Z can be defined as follows: let L = 0 be the system formed by equations (49),
(50) and (51). Note that any vector (zs, zs+1(yTLB), ..., zs+1(yTUB)), where yTs+1 ∈

{
yTLB , ..., y

T
UB

}
, satisfies

L(zs, zs+1(yTLB), ..., zs+1(yTUB)) = 0. Then, zs+1(yTs+1) = ϕ
(
zs, y

T
s+1

)
, where ϕ ∈ Φ is a selection of the

equilibrium correspondence. We say that ϕ is a GME. Any ϕ that is independent of time is a stationary
GME. Let (Z,Pϕ) defines a stationary Markov process with kernel Pϕ. If (Z,Pϕ) has an ergodic invariant
measure, we say that ϕ is ergodic.

Given the compactness of Z, as there are a finite number of shocks, the measurability requirements
for Pϕ follows from Feng, et. al. ([33]).

4.2 Stationarity and Ergodicity under a finite set of shocks

We now derive the set of stochastic steady state for the model. Formally, we show that Φ has an ergodic
selection: if we restrict the number of possible distinct values that yT can take to be finite, we can prove
the existence of an ergodic probability measure associated with a selection ϕ of Φ. In this framework,
equation (56) can be used to construct a point d∗ that generates a set which the process hits with positive
probability starting from any initial condition. This point will be called atom and solves the system of
equations given by (52) to (56) for wealth d∗, with the Euler equation holding with equality and for the
lowest possible level of yT . Moreover, the process will hit the atom in finite time. Thus, it creates an
orbit which endows the dynamical system with a recurrent structure, which in turn implies that there
will be a unique (and thus ergodic) invariant measure for each atom.

Once we find d∗, we will construct a stable state space. That is, any meaningful (i.e. with positive
measure) subset of this state space will be hit by the process in finite time. This property, called
irreducibility, will insure the uniqueness and ergodicity of the process. The existence of 2 regimes, one
defined for equations (49) and (50) when the collateral constraint does not bind and the other given
by equations (52) to (56), together with the possible multiple solutions to equation (52) suggests the
presence of multiple possibly discontinuous Markov equilibria. If we allow for discontinuous selections
of the equilibrium correspondence in the GME, we can construct a transition function that “jumps” to
the atom every time the collateral constraint is hit, generating a “crises”. Thus, the presence of multiple
equilibria, which is in part a consequence of the long-term memory inherited from the SCE, and its
implications for the smoothness of the selections ϕ ∈ Φ increases the predictive power of the model in
the sense that it allows a better match of long run empirical regularities due to the ergodicity of the
equilibrium. Thus, it is critical to understand the “anatomy” of the equilibrium set, something that is
done in section 5.1 and 5.2. As suggested by Stokey, Lucas and Prescott ([78]) 42, the existence of such

42See for instance exercise 11.4, Ch. 11.
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a point is enough to derive a stationary Markov process. The results in Meyn and Tweedie ([53]) give us
the tools to prove all the intermediate steps required to go from the existence of an stationary selection
of the equilibrium correspondence to its ergodicity.43 Our identification of an “atom” in this paper is
related to the presence of occasionally binding constraints in non-optimal general equilibrium economies,
and our application of these tools is novel in the literature. Thus, we will prove the results step by step
as it is immediate to extend the methodology used in this paper to another related frameworks with
equilibrium collateral constraints.

In any RCE, the model is characterized using the Markov kernel and, thus, in 1 “step”. This is a
consequence of the “short memory” approach in this type of equilibrium. The GME, as it is computed
directly from the sequential equilibria, allows us to bring “memory” into the picture. That is, it is possible
to construct a finite time path from the sequential equilibria, which guarantees the existence of an ergodic
Markov process.

Let us start by formally defining an “accessible atom”, which can be thought as a point that is
non-negligible from a probabilistic perspective and gets “hit” frequently. Let ϕ ∼ Φ be a selection of
the equilibrium correspondence defined in the previous subsection. The compactness of Y × Z and Z
guarantees the measurability of ϕ. 44 Further, Pϕ(z,A) ≡ {p(yT ∈ Y : ϕ(z, yT ) ∈ A)} defines a Markov
operator (i.e. Pϕ(., A) is measurable and Pϕ(z, .) is a probability measure) and (Z,Pϕ) a Markov process
where yT is assumed to be iid with probability p(yT ). 45 Let Pnϕ (z,A) be the probability that the Markov
chain goes from z to any point in A in n steps with A being measurable, let ψ be some measure, and
B(Z) be the Borel sigma algebra generated by Z. Then the set A ∈ B(Z) is non-negligible if ψ(A) > 0.
A chain is called irreducible if, starting from any initial condition, the chain hits all non-negligible sets
with positive probability in finite time (i.e., ψ(A) > 0 −→ Pnϕ (z,A) > 0). 46 Intuitively, irreducibility is
a notion of connectedness for the Markov process as it implies non-negligible sets are visited with positive
probability in finite time.

We are now in position to define an atom and state an important intermediate result.

Definition 13 Accessible Atom. A set α ∈ B(Z) is an atom for (Z,Pϕ) if there exists a probability
measure ν such that Pϕ(z,A) = ν(A) with z ∈ α for all A ∈ B(Z). The atom is accessible if ψ(α) > 0.

Intuitively an atom is a set containing points in which the chain behave like an iid process. Any
singleton {α} is an atom. Note that there is a trade off: if the atom is a singleton, the iid requirement is
trivial but, taking into account that the state space is uncountable, the accessibility clause becomes an
issue as it is not clear how to choose ψ. For instance, the typical measure, the Lebesgue measure, it is
not useful as any singleton has zero measure in it. The same happens with irreducibility: when the state
space is finite, it suffices to ask for a transition matrix with positive values in all its positions. In the
general case, we need to define carefully what is a meaningful set as it is not possible to list all of them.
Fortunately, when the state space Z is a product space between a finite set (Y ) and an uncountable
subset of <m there is a well know results that help us find an accessible atom in an irreducible chain (for
proof, see Proposition 5.1.1 in Meyn and Tweedie.)

Proposition 14 Suppose that Pnϕ (z, α) > 0 for all z ∈ Z. Then α is an accessible atom and (Z,Pϕ) is
a Pϕ(α, .)−irreducible.

Proposition 14 follows directly from standard results in Meyn and Tweedie ([53]). Note that the
reference measure may be different from ψ which is called “maximal”. Fortunately, if the chain is

43See Meyn and Tweedie ([53]), chapters 5, 8 and 10 for a detailed discussion of the implications of the existence of an
atom for the existence of an invariant probability measure.

44for example, Stokey, Lucas and Prescott, ([78]), Th. 7.6, p. 184).
45For example, see Grandmont and Hildenbrand ([36]).
46e.g., see Meyn and Tweedie ( ([53], proposition 1)
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irreducible with respect to some measure, say Pϕ(α, .), then it can be “expanded” to ψ (e.g, see Meyn
and Tweedie, ([53], Proposition 4.2.2).

In order to apply Proposition 14 to our model, the finiteness of Y and the definition of the Markov
kernel P will be critical. As we are considering a point, in order to show that Pnϕ (z, α) > 0, it suffices
to find a finite sequence {y0, ..., yn} such that {α} is a solution to equations (52) to (56), the system
associated with a binding collateral constraint. We want to associate the atom with an economic crises
as this fact will allow us to connect the invariant measure with a sudden stop (SS) or, equivalently, to
relate the steady state of the model with the frequency of crises. Typically the literature associates a hit
to the collateral constraint with a crises. We are extending these results and connecting the frequency of
crises with the stochastic steady state.

The power of an atom for characterizing the behavior of the Markov chain is well-known.47 However,
it is possible to illustrate the effect of an atom in the recurrence structure of the chain, which is critical
to define an invariant measure (i.e. a measure µ which satisfy µ =

∫
Pϕ(z,A)µ(dz)). Suppose that the

atom is hit for the first time with positive probability in period τα < ∞ starting from z0. Then, it is
possible to define a (not necessarily probability) measure µ which gives the expected number of visits to
a particular set in B(Z), called it A, before τα. Stated differently, µ(A) gives the sum of the probabilities
of hitting A avoiding α. Imagine the system in period τα − 1 is starting from z0. Remarkably, when you
“forward” µ 1 period (i.e. by applying the Markov operator to it,

∫
Pϕ(z,A)µ(dz)) the expected number

of visits to A avoiding α is the same as the chain will hit α in period n = τα. Thus, µ must not change or
equivalently µ =

∫
Pϕ(z,A)µ(dz). That is, µ is an IM. Provided that τα <∞, it is possible to normalize

µ to be a probability measure, which we will call π (this property is called “positivity”). Further, as
the accessibility of the atom comes together with the irreducibility of the chain (see proposition 14), it
is not surprising that the IM is unique as the chain does not break into different “unconnected islands”.
Finally, the Krein-Milman theorem insures the ergodicity of the chain provided its uniqueness (see Futia,
([34])).

Now, in order to connect the existence of an invariant measure with the frequency of crises let τα be
the time when the process hits the collateral constraint. Then, µ(A) gives the cumulative probability of
hitting A avoiding a crises. Thus, the frequency of a SS affects the stationary distribution µ. Frequent
crises implies more volatility. To understand this relationship for equilibrium paths in the steady state,
note that every time the process hits the collateral constraint it reverts to α. Because Pϕ(α,A) = ν(A),
the value of zτα+1 is independent of the past, which implies that it loses all the inertia inherited from the
Markovian structure of the process. Thus, the equilibrium stochastic dynamics behave unconditionally
with respect to the past, increasing its variability.

To relate these facts with the empirical performance of the model, we need a Law of Large numbers.
As the measure is ergodic, it is well known that

∑T
t=0(zt/T )→ Eµ(z) almost everywhere, where→ means

T tends to infinite. 48 In other words, the existence of an ergodic measure insures that a sample mean
computed by an increasing large time series of simulated data will hit the steady state of the model,
represented by the mean Eµ(z), for a large fraction of possible paths {zt}∞t=0. Thus, the time spells
without a crisis shape the long run distribution of the model, affecting its ability to replicate stylized
facts. The following theorem proves the existence of an ergodic measure µ for the model described in
section 2.

Theorem 15 There exists an ε > 0 such that ylb ∈ (0, ε), a compact set J1 ⊆ Z with Φ : J1 × Y −→ J1
and a selection ϕ ∼ Φ such that the process defined by (J1, Pϕ) has an unique ergodic probability measure.

47Meyn and Tweedie mention the importance of an atom for general state space Markov chains relative to countable
state space Markov chains (e.g., [53], p96). A discussion of the important of the existence of an atom in the context of the
Markov chain theory is outside the scope of this paper, but a systematic discussion of this fact is presented in Meyn and
Tweedie (Chapters 8, 10 and 17).

48e.g., see Stokey, Lucas and Prescott, ([78]), chapters 11 and 12)

26



5 Applications

We now apply the results obtained in sections 3 and 4 to characterize the model’s SCE described in section
2. It is organized in 3 subsections: i) a comparative analysis of all equilibrium definitions introduced so
far and their connection with the degree of memory assumed in each of them. In this section we will focus
on the interplay between the different equilibrium concepts and how to use them and their qualitative
properties to select multiple equilibria. ii) A characterization of the collateral constraints which focus on
multiplicity. iii) A quantitative exploration of short and long run simulations. In this last subsection, we
describe the algorithms generated by the Generalized Markov Equilibria (GME) and then use them to
compute and simulate an ergodic, a stationary and a non-stationary equilibrium.

5.1 Equilibrium definitions, memory and selection

In this subsection, we split the discussion in 2 parts. First, the interplay between different equilibrium
concepts. Sections 2, 3 and 4 all contain its own definition of equilibrium: SCE, RCE and GME respec-
tively. This section ranked them in terms of memory and describes the usefulness of the RCE to construct
an ergodic selection of the GME that is efficient from a numerical perspective. Second, we discuss how
to use these concepts and their properties to construct a refinement mechanism.

5.1.1 The interplay between SCE, RE and GME

Each definition generates a vector valued function with identical image, [ct, dt+1, pt], but different domain.
From sections 2, 3 and 4 it is clear that:

� a SCE defines [ct, dt+1, pt] (y0, ..., yt) and has infinite memory relative to the minimal state space
of (y,d)

� a RCE defines [c, d+, p] (y, d) and has zero memory on the minimal state space (y,d)

� a GME defines [c, d+, p] (y, d,m) and has finite memory on the minimal state space (y,d), and zero
memory on the enlarged state space (y,d,m)

From these remarks it is clear that:

SCE ⊇ GME ⊇ RCE

Even tough we can use the general preferences discussed in section 2 (see assumption 1), to understand
the implications of the statements above it is convenient to use a specific utility function and restrict the
model using Remark 2 in section 2. Much of the applied literature uses the following functional form for
U(A(ct)):

U(A(ct)) =
A(ct)

1−σ − 1

1− σ
,A(ct) = (a(cTt )1−1/ξ + (1− a)(cNt )1−1/ξ)

1
1−1/ξ (57)

Using this utility function, if we assume σ = 1/ξ = 2, U ′
{
A1(cTt )

}
reduces simply to a(cTt )−1/ξ. Thus,

equation (50) becomes

[κ{yT + pyN} − d+][(yT + d+R
−1 − d)−1/ξ − E((yT+ + d++R

−1 − d+)−1/ξ)] = 0, (58)
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where we have used the fact that m is the envelope of the dynamic programming problem, m = V ′ =
a(cTt )−1/ξ. Note here the relevance of the qualitative results in section 3.1: the envelope is a well defined
derivative and it is deeply connected with the dual representation of the equilibrium. In this sense, we
are using the primal and the dual version of the households optimization problem to construct the GME.

We now turn to the relationship between the RCE and the GME. After applying the forward operator,
replace m+ on the right hand of equation (50). Let define g to be the equilibrium policy function for d+
in a RCE. In particular, d+ = g(y, d) = [A∗(CT (y, d) + d− yT )]R where CT ∈ {∧Ψ∗,∨Ψ∗} according to
theorem 9. Similarly d++ = g(y+, g(y, d)) and p(y, d) satisfies equation (24) at the RCE. Note remarkably
that, depending on the initial condition {0, cmax}, we will respectively converge to {∧Ψ∗,∨Ψ∗} with
∧Ψ∗ ≤ ∨Ψ∗. That is, if agents are pessimistic (i.e., start the iterative process in theorem 9 at CT0 = 0),
they will end up with a low equilibrium consumption - debt pair. The contrary happens if they are
optimistic (i.e., start the iterative process in theorem 9 at CT0 = cmax). That is, we found 2 different
equilibria connected to the dynamics in the equilibrium Euler equation. We refer to this source of
multiplicity as dynamic pecuniary externality. Note that this source of multiplicity is present given any
possible number of roots in the collateral constraint, expressed in equation (41). If this last equation has
more than 1 solution, for any given CT ∈ {∧Ψ∗,∨Ψ∗}, we obtain another source of multiplicity that we
call static pecuniary externality. Thus, equation (58) becomes:

[κ{yT+p(y, d)yN}−g(y, d)][(yT+g(y, d)R−1−d)−1/ξ−E((yT++g(y+, g(y, d))R−1−g(y, d))−1/ξ)] = 0 (59)

In section 4 we showed that the GME has an ergodic selector. However, we were silent as regards
ergodicity in section 3, when we characterized the RCE. Equation (59) explains why: we can’t show
the ergodicity of an RCE simply because there is not enough memory on the equilibrium definition or
equivalently because there are not enough degrees of freedom to model the future. By definition, the
GME has an additional state variable, m. Note that picking m as a state variable, because of its definition
and the existence of a well defined envelope, is equivalent to set d+ as an additional state variable. In this
sense, the qualitative properties of the dynamic programming program described in section 3.1 not only
guarantee the existence of a standard envelope for any RCE in the presence of multiple equilibria, but
also are essential to pick the appropriate additional state variable in the GME to construct an ergodic
selector. Thus, under a GME equation (58) becomes:

[κ{yT + p(y, d, d+)yN}− d+][(yT + d+R
−1 − d)−1/ξ −E((yT+ +ϕ(y+, y, d, d+)R−1 − d+)−1/ξ)] = 0, (60)

where ϕ is a selection from the equilibrium correspondence used to define a GME in section 4.
Equation (60) shows an immediate implication of expanding the state space: d++ depends now on an
additional variable, adding memory to the cognitive structure of agents. In equation (59), after setting d
to a constant value, d++ depend only on exogenous shocks. It is clear from (60) that d++ is not restricted
to satisfy d++ = g(y+, g(y, d)). Thus, we have SCE ⊇ GME ⊇ RCE as the SCE does not even has the
stationarity requirements of the GME.

We now turn to the relationship between the RCE and the ergodic GME (EGME) (and in particular,
discuss the role of the uniqueness of the unconstrained problem in the RCE on the characterization
of EGME). Section 4 showed that this additional degree of freedom is sufficient to obtain an ergodic
representation. To construct an EGME we use the qualitative properties in the unconstrained problem
defined in section 3, equation (37). In particular, this expression is increasing in d for a constant y. Thus,
we can construct a positive probability path such that the collateral constraint is binding in finite time,
which in turn allows us to return to the atom if we set y = ylb.

Note that the notion of dynamic pecuniary externality, which we defined above, is absent in the
GME. However, as in the RCE, the existence of a static pecuniary externality associated with equilibrium
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collateral constraint arises when aggregators A(c) are such that the mapping Z∗cc(x, x, s
e, κ/R) in the

definition of X∗(se) in equation (47) has many roots. In this sense, when Assumption 3 is imposed,
for the RCE the model cannot display dynamic pecuniary externality (which follows, in essence, from
Theorem 11 in section 3). Moreover, as Lemma 7 showed, the unconstrained policy function is unique
conditioned on the parameterization of the collateral constraint with CT (S). So if there is no static
pecuniary externality, as occurs under Assumption 3 in section 3, in our RCE operator equation we
set the collateral constrained consumption tomorrow to be inf{c(d, y), cT∗c (d, y)}; where cT∗c (d, y) is the
pointwise unique solution for the collateral constraint in equation (71), which in effect eliminates also any
period dynamic pecuniary externality. This implies under Assumption 3 on the consumption aggregator
A(c), Lemma 7 directly implies Theorem 11, and therefore iterations on our RCE fixed point operator
from any initial c ∈ Cp

++ = {c ∈ Cp|c(d, y) > 0} in Theorem 9 converges to the unique RCE in the
unconstrained states, and therefore the RCE tradables is c∗(d, y) = inf{cT∗(d, y), cT∗c (d, y)}.

Now, under the conditions discussed in the previous paragraph, there is an EGME for each RCE and
they are completely characterized by the roots of the collateral constraint. Of course, the dynamics of
an EGME and of the RCE will be different as the latter does not revert to the atom anytime the model
hits the collateral constraint. The RCE is not ergodic because of the lack of memory.

The discussion above shows that the static pecuniary externality is present in both, RCE and EGME.
To construct a stationary equilibrium, we must select one of the multiple roots together with the initial
conditions of the dynamical system induced by any of these equilibria. This can be interpreted as an
additional i.d.d. variable (i.e., root selection) that must be constant to preserve stationarity. Section 5.2
shows how to handle the static pecuniary externality in the EGME / RCE and provides a restriction on
the preferences that eliminate it. Section 5.3 will show that the EGME can be computed efficiently. Thus,
this paper contains a toolkit to deal with models of financial crises in small open economies composed
by: i) a definition of equilibrium, the GME, ii) a steady state, the ergodic invariant measure discussed in
section 4, and iii) an algorithm based on some qualitative properties of the RCE, which will be described
in section 5.3.

5.1.2 How to handle multiple equilibria

We now summarize the discussion in the preceding section and provide a simple guide on how to handle
multiplicities.

RCE

� Static pecuniary externality. Choose one of the roots of the collateral constraint in (41). Section
5.2 will show how to select among 2 possible roots for a standard utility function in the literature
and will provide sufficient conditions for a unique root in the collateral constraint.

� Dynamic pecuniary externality. Initialize the first step operator (42) with the upper bound in the
space of candidates cmax and find a first step fixed point, which is unique due to lemma 7. Then,
move to the second step. Choose an initial condition {0, cmax} and using the operator (46) to update
the equilibrium policy function. Theorem 9 guarantees monotonic convergence to {∧Ψ∗,∨Ψ∗}. The
procedure is constructive and thus contains a selection mechanism for the multiplicity inherited from
the dynamic pecuniary externality.

EGME

� Expanded state space. Add an additional state variable m with respect to the minimal state
space (y, d). In the state space (y, d,m) equations (52)-(56) define a determined system using the
equilibrium correspondence Φ in definition 12.

� Suitable additional state variable. Due to equations (21) and (22), the envelope is well defined.
Then, we can use equation (60) to define a selection ϕ ∈ Φ that is constructed as follows: i) when
the collateral is not binding, use the unconstrained policy function in (37), recovering p from (24).
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ii) When the constraint is binding, say at y, d, d+, hit the atom (ylb, d∗) using equation (60) where
d+ = R(c(ylb, d∗)− ylb + d∗) and c(ylb, d∗) is given by equation (32). Notice that at the atom both
equation (56) and the collateral constraint are satisfied with equality but at y, d, d+ we may have
a strict inequality in either one or both equations.

� Numerical efficiency and ergodicity. Lemma 7 (a) and (b) implies that the GME is easily imple-
mentable: we can use the unconstrained problem until we hit the collateral constraint, then one
of the roots of this constraint defines the atom. As in the RCE, we must choose one of these
roots for any time period to stationarize the process and construct a selection ϕ with d++ =
ϕ(y+, ylb, R(c(ylb, d∗)− ylb + d∗), d∗) when the collateral is binding and d++ = ϕ(y+, y, R(c(y, d)−
y + d), d) at any other time. Theorem 15 implies that this process is ergodic.

It is clear that the static pecuniary externality is crucial for both types of recursive equilibria. In the
next section we carefully deal with this type of externality.

5.2 Multiplicity of equilibrium and static pecuniary externality

In this section we first discuss the connection between multiplicity and static pecuniary externalities.
Then, we provide a sufficient condition to eliminate the former and thus the latter. It turns out that the
intra-temporal elasticity of substitution is a key element behind multiplicity and static externalities. By
controlling this elasticity not only we eliminate both these features of the model, but also in some cases
the presence of a spiralized crisis often referred as Fisherian deflation (see Bianchi ([15]) among others).
Thus, severe balance of payment crises and multiple equilibria are deeply connected.

5.2.1 Multiple equilibria under static pecuniary externalities

From the discussion above, it is clear that the RCE and the EGME generate multiple selections. While
the dynamic pecuniary externality is only present in the latter, the static pecuniary externality affects
both of them. This source of multiplicity, frequently studied in the literature (see Schmitt-Grohé and
Uribe ([74])), is concerned with the possibility of having more than 1 solution to equation (52) when the
collateral constraint is binding. Note that this equation defines a stationary system in debt today d for
any level of tradable income yT . Thus, to characterize it, the bounds on marginal utility generated by
assumption 1 are not required. As this section is concerned with this type of multiple equilibrium, we
will use standard CES preferences as, for instance, in Bianchi ([15]). Given a uniform upper bound on
debt, for the RCE and the GME, this assumption can be imposed to make our results comparable with
the literature (see remark 2 in section 2).

Let U(A(x)) = (A1−σ − 1)/(1−σ), A(c) = (a(cT )1−1/ξ + (1− a)(cN )1−1/ξ)1/(1−1/ξ) with σ = 1/ξ = 2
and a = 1/2. We will assume that Z is compact. Then, equation (52) becomes:

f(P ) ≡ P 1/2 − κPyN = ylb/y
N + κylb − d/yN ≡ K(d), (61)

where we have set yT = ylb and (1− a)/a = RyN = 1. As (61) for the GME is the analogous of (41)
for the RCE when CT is at its stationary equilibrium value, we can characterize the static pecuniary
externality in both equilibrium types using this equation. The left hand side of (61) is a function of P
and the right hand side of d. Let f(P ) and K(d) be the former and the latter respectively. As we have
assumed RyN = 1, f is increasing for 0 < P < R2/(4κ2) and decreasing otherwise (for P > 0, of course).
Further, f(R2/(4κ2)) = R/2κ = K(ylb(1 + κR) − (1/2κ)) and K(0) = ylb(R + κ). Figure 1 illustrates
equation (61) for the described parametrization with R2/(4κ2) ≡ P ∗.

The K locus depends on d. The f locus depends on P , that is depicted in the “x-axis”. The K(0)
line represents the smallest possible value for d in the constrained regime (i.e. d = 0). Between K(0)
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Figure 1: Equation (61), yT = ylb
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The K locus depends on d, which is not depicted in the figure above. The f locus depends on P in the “x-axis”. The K(0)
line represents the smallest possible value for d in the constrined regime (i.e. d = 0). Between K(0) and R/2κ the regime is
not collateral constrained. Below K(0) and over the locus formed by f lie all the candidate pairs (d, P ) for the constrained
regime.

and R/4κ the regime is not collateral constrained. Below K(0) and over the locus formed by f lie all the
candidate pairs (d, P ) for the constrained regime.

Note that for d = 0 there 2 possible exchange rate levels, P1 and P2, and a change in d with d > 0
can either increase or decrease P . This is depicted in points P3 and P4 in the same figure. Moreover,
an increase in yT implies that the K(0) locus must jump upwards while the f(P ) locus remains constant
as it is independent of tradable output by construction. Figure 2 illustrates this situation. Note that
the collateral constraint doesn’t bind when the agent saves (i.e. d < 0) as endowments and prices are
positive. Thus, after the depicted increase in yT , the region of possible multiple prices for a positive level
of debt now includes the whole f locus.

Figures 1 and 2 illustrate the implications of the stochastic structure in one of the sources of multi-
plicity of equilibrium: as we increase the shock level from ylb to yT there is an increase in the admissible
(positive) debt levels which can generate multiple equilibria. This fact follows immediately from the
definition of K.

The following claim states the existence of multiple equilibrium for a sufficiently rich set of shocks.
See the supplementary material for this subsection in the online appendix for a detailed discussion.

Assume the equilibrium set is compact. Then, if the set containing exogenous shocks Y has at least
3 elements, then the system of equations formed by (52) to (56) has 2 solutions for at least 2 different
elements in Y (i.e. the model has multiple equilibrium).

5.2.2 Static pecuniary externality and intratemporal elasticity of substitution

In this subsection we present 2 examples of different intra-temporal preferences to study the interaction
between static pecuniary externalities and multiple equilibria. We find that, even though the absence of
a static pecuniary externality is sufficient to obtain a unique equilibrium, it is not necessary.

Just to keep the paper self-contained, let us define the intratemporal elasticity of substitution:

31



Figure 2: Equation (61), yT > ylb
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An increase in yT shifts the K line. Thus, the whole locus f contains all the candidate pairs (d, P ) for the constrained
regime.

ζIES ≡ ∂ln(cT /cN )/∂ln(MRS(cN , cT )) = ∂ln(cT /cN )/∂ln(p).

If U(A(x)) = (A1−σ − 1)/(1− σ), A(c) = (a(cT )1−1/ξ + (1− a)(cN )1−1/ξ)1/(1−1/ξ), ζIES = ξ.

The discussion in the preceding subsection implies that as long ξ = 0.5, we will generally have: i)
static pecuniary externalities, ii) multiple equilibria, iii) a spiralized (i.e., observed in at least 2 consecutive
periods) balance of payment crises characterized by deleverage and a real depreciation (i.e., a reduction in
both d and p). The critical aspect behind i) and iii), ii) was extensively covered in the previous subsection,
is captured by the collateral constraint in equilibrium: d+ = κ(yNp(cT ) + yT ), where the dependence of
p on cT follows from equation (52). A balance of payment crisis implies a reduction in cT , which pushes
down debt through the collateral constraint and a depreciation (i.e., a reduction in p as it is increasing
in cT ). The supplementary appendix contains details about these dynamics.

Now consider imposing a quasi-linear intra-temporal structure of preferences. That is, assume that:

Ã(c) = cT +
(cN )1−1/ξ

1− 1/ξ
, (62)

where we assumed that a = (1− a). Under equation (62), p, characterized by equation (52), becomes
p = (yN )−1/ξ and a binding collateral constraint implies d+ = κ((yN )1−1/ξ + yT ) which not only has 1
root, but also it breaks the spiralized recession as it rules out the static pecuniary externality (i.e., the
dependence of p on cT ).

The intuition behind the uniqueness is straight forward: the marginal rate of substitution, equation
(52), is independent49 of cT . As GDP expressed in tradables, which equals pyN + yT , is exogenous
and (intra-temporally) tradable consumption only responds to changes in income due to the quasi-linear
structure of preferences, the intra-temporal behavior of tradable consumption is exogenous. Thus, there
is neither static pecuniary externality nor spriralized recession. Of course, inter-temporaly tradable
consumption is driven by the standard consumption smoothing channel which is captured by (37). Lemma

49With quasi-linear preferences the elasticity of substitution is not constant but is 0 for compensated price changes
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7 implies that the policy function driven the unconstrained inter-temporal channel d(d, yT ) is unique.
Moreover, as the collateral constraint only has one root, uniqueness is guaranteed. Finally, as d+ =
min{κ((yN )1−1/ξ + yT ), d(d, yT )}, the equilibrium is continuous which in turn guarantees its ergodicity
and stationarity by standard results. Thus, with quasi-linear preferences we don’t have static pecuniary
externalities and the equilibrium is unique (i.e., the absence of static pecuniary externalities is sufficient
for uniqueness). We now turn to necessity.

Assume that Ā(c) = ln(cT ) + ln(cN ). That is, ζIES = ξ = 1 and p = cT /cN . In this case, we have:

p =
(1 + κ)yT − d

(1− κ)yN
(63)

Equation (63) implies the necessity of 2 additional restrictions: i) p ≥ 0 and ii) pyN + yT ≥ 0. The
former implies (1 + κ)yT ≥ d and the latter 2yT ≥ d. By assuming 0 < κ ≤ 1, we can get rid of ii) as i)
will bind first. Now the collateral constraint is given by: d+ ≤ κ(1 − κ)−1[2yT − d]. Thus, we have the
following restriction:

d+ = min{d(yT , d), κ(1− κ)−1[2yT − d], (1 + κ)yT } (64)

Equation (64) implies that if 0.5 < κ ≤ 1, then d+ = min{d(yT , d), (1 + κ)yT }, which implies
uniqueness, continuity and the absence of pecuniary externalities. However, if 0 < κ ≤ 0.5, we have
d+ = min{d(yT , d), κ(1 − κ)−1[2yT − d], which implies uniqueness but the model displays pecuniary
externalities and spiralized recessions. To verify this claim we must have:

d++ = κ(1− κ)−1[2yT − (κ(1− κ)−1[2yT − d])] (65)

κ(1− κ)−1[2yT − (κ(1− κ)−1[2yT − d])] < κ(1− κ)−1[2yT − d] (66)

Equation (65) implies that the collateral constraint is binding for 2 consecutive periods and equation
(66) that there is deleverage. While the latter follows directly if 0 < d < yT , the former requires a more
subtle argument. Note that to verify equation (65) we need to have d(yT , x) > κ(1 − κ)−1[2yT − x],
where x is a potential value for debt, for at least 1 level tradable output yT . As d(yT , x) follows from
a standard savings problem, we must have d(yub, 0) < 0. Let K2 be the compact set containing d
according to lemma 3 and Klb

2 < 0 its lower bound. As d(y, .) is increasing in x for any y, we have
d(yub,K

lb
2 ) < 0. Then, κ(1−κ)−1[2yub−x] is linear and decreasing in x with κ(1−κ)−1[2yub−Klb

2 ] > 0.
Then, there exist x∗ with d(yub, x

∗) = κ(1 − κ)−1[2yub − x∗]. The last 2 inequalities imply that we
have: d(yub, x) > κ(1− κ)−1[2yub − x] for x ∈ (x∗,Kub

2 ] as desired where Kub
2 is the upper bound of K2.

Thus, we show that with log preferences, we have a unique continuous equilibrium and static pecuniary
externalities. That is, uniqueness is not equivalent to the absence of static pecuniary externalities.

5.3 Empirical Procedure, Algorithms and Simulations

We now turn to the quantitative implications of the results presented in sections 3 and 4. Taking into
account the lack of a closed form solution, we must take care of the numerical approximation of the model
presented in section 2.

We first show how to compute the ergodic selection in the GME. It can be used to simulate a recurrent,
and thus ergodic, behavior as the stochastic paths visit the atom in a crisis. Following the theoretical
results in section 4, each ergodic selection has a unique invariant measure. Then we solve the model for a
parameter set borrowed from the empirical literature and compute the effects of a change in the interest
rate in the long run of the model.
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We investigate numerically the difference between a ergodic, a stationary and a non-stationary equi-
libria. The discussion in section 5.1.1 shows that it is possible to remove the ergodic component of
any selection in a GME simply by visiting a different point every time the collateral constraint binds.
However, this selection is still time invariant and thus, stationarity We compute the difference between
simulations generated by an ergodic and a stationary GME equilibrium. We found that ergodic sim-
ulations generate smoother consumption paths or, equivalently, agents are less financially constrained.
Finally, we compute a non-stationary GME. As it is expected, this equilibrium can generate large fluc-
tuations in macroeconomic fundamentals (i.e. current account) using standard preferences and with the
same shock structure. That is, simply by changing the definition of equilibrium, if we are willing to give
up the long run performance of the model, the same theoretical structure is capable of generating a great
range of balance of payments crises.

5.3.1 Numerical procedure

We describe how to compute an ergodic selection and use it to simulate the long (a path of length N)
and short run (of length T < N) behavior of the model. The online appendix contains additional details.

Let (d, d+) denote the debt levels observed today and tomorrow. The presence of the collateral
constraint implies that d+ 6= d(d, y), where as before d(., .) denotes the policy function in the un-
constrained regime for the RCE. Thus, the ergodic selection of the GME ϕ depends on ϕ(d, y, y+)
for every (d, y, y+) ∈ K2 × Y × Y if the collateral does not bind and on ϕ(d+, d, y, y+) for every
(d+, d, y, y+) ∈ K2 × K2 × Y × Y if it binds. The connection between the RCE and the GME de-
scribed in section 5.1.1 guarantee the existence of a stationary structure for the GME given by equations
(52)-(56) and d(., .). This fact implies that the GME is computationally efficient. That is, once d(., .) is
available, it can be computed fast.

The algorithm in the online appendix, called GME ergodic algorithm, generates a sequence {pt, dt+1}Tt=0

which depends on pT+1(yT+1) and dT+1(yT ) for a given point in the set of deep parameters Θ. This vari-
ables are pinned down by picking an ergodic selection for the GME. The results in section 5.1.1 implies
that we need to constraint the paths generated by the GME using the policy function of the RCE. How-
ever, this is not necessarily the case if we only need a stationary GME. That is, in this last case, we may
allow d+ 6= d(d, y) even if the collateral does not bind. Thus, we are adding memory to the selection as
d+ may not depend on (d, y). Contrarily, any sequence generated from the minimal state space algorithm
depends only on the point in Θ and the draw from the stochastic process which generates tradable output,
for a given d0, y0. That is, ϕ ∈ Φ does not necessarily satisfied dT+2(yT+1) = d(d(dT , yT ), yT+1) as it is
the case for the minimal state space algorithm.

The online appendix also contains the numerical procedure to compute a stationary GME. The func-
tion which maps [yt, pt, dt] 7−→ [yt+1, pt+1, dt+1] for each yt+1 ∈ Y , which defines the Markov kernel in
the GME, does not necessarily satisfy the structural properties required to prove the existence of a RCE.
Thus, the path {pt, dt+1}Tt=0 is more flexible as the transition function in the GME can be computed
pointwise as in the SCE. This is the numerical implication of expanding the memory in the recursive equi-
librium as the transition function ϕ is computed exactly as in the SCE (i.e., pointwise for each element
in the draw from (Y, q)).

The online appendix also describes a non-stationary GME Algorithm. In this case the sequence
{pt, dt+1}Tt=0 depends on the histories of the form py(yt), dt(y

t−1) with yt = y0, ..., yt. Thus there is a
trade off: we gain flexibility with respect to the stationary / ergodic GME in order to incorporate more
“memory” from the SCE but in return we can not claim that these paths are connected with the steady
state of the model and that they are independent of time.

5.3.2 Results

We now solve the model. The table below contains the parameters, borrowed from Pierri, et. al. ([63]).
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Table 1: Parameters

Parameter κ β σ ξ a zl zh p(zl) R R’
Value 0.3 0.99 2.0 0.5 0.5 0.5 1.5 0.2 1.05 1.025

We now show the results of simulating the ergodic and the stationary process. We present the effects
of a reduction in the interest rates in both cases for consumption (Table 2) and debt (Table 3).

Table 2: Summary of Simulations Statistics for Consumption

Statistics Mean(R) STD(R) Mean(R’) STD(R’)
Ergodic 1.0497 0.450 1.0501 0.453
Stationary 1.01 0.52 1.04 0.53

Table 3: Summary of Simulations Statistics for Debt

Statistics Mean(R) STD(R) Mean(R’) STD(R’)
Ergodic 0.230 0.086 0.235 0.094
Stationary 0.27 0.06 0.29 0.07

The statistics are reported at distinct truncation levels as there are some cases for which 2 decimal
positions are not enough to differentiate between simulations. A reduction in the interest rate generates
the expected changes in ergodic and stationary simulations: an increase in consumption and thus a
reduction in the savings rate which implies more debt. However, there are at least 2 connected differences:
stationary simulations overestimate i) the elasticity of average consumption and debt with respect to the
interest rate, ii) the volatility of consumption for the same interest rate, which implies that debt is less
volatile. For the first fact, the intuition goes as follows: as the atom is not directly affected by the change
in the interest rate, only through its effect on the unconstrained policy function in the RCE, and ergodic
simulations are generated as a sequence of recurrent sets which has a regeneration point in the atom,
average observed endogenous variables are not severely affected. For the second fact, note that in the
ergodic simulation debt is regenerated to a very low level as by construction the atom is defined to hit
the collateral constraint with equality. Thus, de-leveraging is more significant in an ergodic crises, which
implies that the economy has more time to accumulate debt and to smooth consumption.

The take away point from the above results is related to the invariance of the atom with respect to
parameter changes. The most direct way to change the ergodic distribution is to affect the regeneration
point. In this case, numerically, the atom does not change significantly after the interest rate shock even
tough the unconstrained policy function and the value of the collateral are both affected. In particular,
the atom is given, as described in the appendix, by:

d(d∗, ylb;R) = κ

[
ylb + yN

(
A2(yN )

A1(ylb + (d(d∗, ylb;R)/R)− d∗)

)]
After the change in the interest rate both the left and right hand side of the equation above rises as

d(d∗, ylb;R) goes up and d(d∗, ylb;R)/R goes down. Thus, the change in d∗ is not significant. Finally, we
present a non-stationary simulation in the table below.

Table 4 reflects the flexibility contained in the model. By changing selections, the SCE is able to
replicate a sharp reversion in the current account, as it is frequently observed in data, without requiring
a change in the parameters (i.e. a reduction of κ or ylb).
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Table 4: Non Stationary Crises

Non Stationary Simulations t− 1 t t+ 1
Current Account / GDP −10% −8% +5%

6 Extensions and Concluding Remarks

We conclude the paper with a brief discussion of how the results of this paper can be extended to
more general versions of this model. In particular, we discuss the case of continuous shock space and
nonhomothetic preferences. Relative to the former issue of continuous shock spaces, as well as non-
homethetic preferences, the results on the existence, computation, and characterization of RCE in section
3 change very little. On the other hand, the results for section 2 on the existence of more general SCE
than RCE with continuous shock spaces requires significant changes in constructions, and this topic is
beyond the scope of the existing paper.

In particular, for the case of general continuous shocks spaces and Markov shocks, the results in
Section 3 on RCE generalize directly. First, with continuous shock spaces, measurability issues are now
not trivial. They also change the order completeness properties under pointwise partial orders of the
spaces Cp (resp., C∗) in lemma 6 (resp., lemma 8). In particular, both spaces are now only σ−complete
lattices (i.e., complete only relative to countable subsets). As our RCE existence mapping in Theorem 9
is based on order continuous operators, then one change in the results is that in Theorem 9, we the set
of RCE now is only countable chain complete. (e.g., see Balbus, Reffett, and Wozny [10], Theorem 7.1).
The iterative monotone comparative statics results for RCE do not change as the theorems applied from
Balbus et al. ([8], [9]) only require the space C∗ in lemma 8 to be σ−complete lattice. So all the results
of section 3 on RCE can be directly extended to the case of continuous shock spaces. As RCE induce
SCE, we also know that SCE exist.

Now, the complication with continuous shock spaces (and especially Markov shocks) is extending
the more general existence results of SCE beyond the set of RCE, and most importantly extending the
ergodicity results in Sections 4 and 5 to the Markov shock case. As mentioned earlier in the paper, RCE
are only short-memory SCE, and the stochastic equilibrium dynamics associated with such RCE are very
simple relative to more general forms of SCE. For more continuous shock spaces, the existence of SCE
as proved in Theorem 4 is requires a more delicate construction (e.g., see our companion paper in Pierri
and Reffett ([64]). In principle, this can be done. Unfortunately, the ergodicity results in section 4 and 5
using GME representations are not so easily extended to the Markov shock case. So this will be a subject
for future work.

Additionally, when constructing the set of RCE, as we mentioned in section 3, we imposed Assumption
2, which imposes a standard Inada condition on the marginal utility of consumption in tradeables. This is
not assumed in Assumption 1 that is used to prove the existence of SCE (where we place an upper bound
on consumption as cT → 0 (i.e., bounds consumptions uniformly on the interior of the consumption set).
In Assumption 1, we guarantee this uniform inferiority of consumption by imposing a non-homothetic
parameter in the assumption of the aggregator A(c). As we argue in the paper (and show for our numerical
results), one can make the ”non-homothetic” term very small so in the end, it does not matter for our
results relative to using a standard Armington aggregator. But there is a complication for computing
the least RCE when Assumption 2 is not present. We need to guarantee the existence of a ”lower
subsolution” in Theorem 9 to compute a least RCE. Guaranteeing the existence of this element requires
finding a ”sufficiently high” marginal utility of tradeables consumption near 0. This greatly complicates
the characterization of least RCE. Nothing changes for the characterization of greatest RCE. But under
Assumption 1, RCE still exist.

To see how that would be case, simply note that if we have the preferences that only satisfy assumption
1, we can always pick the non-homothetic parameter used to guarantee sttrictly positive consumption to
be arbitrarily small so that consumption of tradeables (in a RCE) stays strictly positive (and an Inada
condition for strictly positive consumption that guarantees the existence of a roots to define our RCE op-
erator in the ”unconstrained states” in equation (40). So all the results on existence and characterization

36



of RCE go through under either the assumptions that guarantee uniformly interior consumptions (as in
Assumption 1), or the existence of strictly positive consumption in all states (as done using Assumption
2)

One other question we are considering per future work are versions of the sudden stops model with
production (e.g., as in Benigno et al ([12]). Here the authors allow for endogenous labor supply that
is used by firms in the economy producing both tradeables and non-tradeables consumption good (but
there is a fixed capital stock). If the preferences are Greenwood-Huffman-Hercowitz (GHH) preferences,
nothing in our arguments really change. If preferences over leisure are more general, the arguments in
this paper have to be changes a great deal, but still the methods of the paper can be extended to such
economies. See Pierri and Reffett ([64]).

Finally, another interesting and important variation of this model is the case when collateral con-
straints on debt are based on future wealth of the household, not the current wealth. The importance
of these issues have been discussed in Ottonello, Perez, and Varraso ([60]), and in a related context in
Brooks and Dovis ([19]). When collateral constraints in sudden stops models are based on future wealth,
it turns out that the multiplicities of dynamic equilibria question can become very subtle. For example,
it is not clear at all that our uniqueness of RCE result will extend to this case. Further, even to develop
sufficient conditions for the existence of either SCE and/or RCE becomes substantially more demanding.
Finally, the stochastic dynamics of the model appear to be much more complicated to characterize, so
it is not clear how to extend the ergodicity results for using GME representations of SCE (even if they
exist). We are considering this important case in our future work.
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[75] Schmitt-Grohé, S. and Uribe, M. 2021. Deterministic cycles in open economies with flow collateral
constraints, Journal of Economic Theory, 192,105195.

[76] Sleet, C. and Yeltekin. S., 2016. On the computation of value correspondences for dynamic games.
Dynamic Games and Applications, 6, 174-186.

41



[77] Ludwig S. 2019. Consumption, savings, and the distribution of permanent Income, Unpublished
manuscript, Harvard University.

[78] Stokey, N. L., Lucas, Jr., R. E. and Prescott, E. C., 1989 Recursive Methods in Economic Dynamics,
Harvard University Press.

[79] Tarski, A. 1955. A lattice-theoretical fixpoint theorem and its applications. Pacific J. Math. 5, 285-
309.

[80] Topkis, D. 1998. Supermodularity and Complementarity, Princeton Press.

[81] Veinott, A. 1992. Lattice programming: Qualitative optimization and equilibria, MS, Stanford.

[82] Woodford, M. 1986. Stationary sunspot equilibrium: the case of small fluctuations around steady
state. mimeo.

42



Appendix

Proofs for section 2

We now turn to the characterization of the SCE. In order to get the paper self-contained, we write the
primal version of the first order conditions which will be useful to prove the long run properties of the
equilibrium. We keep the notation c1 ≡ cT , c2 ≡ cN in line with Assumption 1.
For any given sequence of prices p = {pt}∞t=0, from the first order conditions in (7-10), we can ob-
tain the following two expressions critical in characterizing the stochastic structure of binding collateral
constraints:

[c2(yt)][{βtU ′(A(c(yt))}{−A1(c1(yt))p(yt) +A2(c2(yt))}] = 0, yt − a.e (67)

[κ{yt + p(yt)yN} − d(yt)][U ′(A(c(yt))A1(c1(yt))

−Et(U ′(A(c(ytyt+1))A1(c1(ytyt+1))] = 0, yt − a.e
(68)

where Et can be obtained using the ytth row of the transition matrix if the cardinality of this shock set
Y is finite, or by integrating using the density associated with χ evaluated at yt if Y is an uncountable
set. In the i.i.d case, we have Et = E.
We make a few remarks on (67) and (68). First, the characterization of optimal solutions uses the primal
formulation of the problem, and hence is written in terms of the “complementary slackness” version
of the Karush-Kuhn-Tucker (KKT) equations. In particular, in either equation (67) or (68), the first
bracket contains the inequality constraint, c2 ≥ 0 in equation (67) or κ{yt + p(yt)yN} − d(yt) ≥ 0 in
equation (68), and the second bracket consists of the derivative of the objective function with respect to
the control, c2(yt) in equation (67) and d(yt) in (68). Additionally, note we have eliminated the control,
c1, and the restriction in equation (2) from the KKT system. Formally, c1(yt) must be replaced with

−p(yt)c2(yt) − d(yt−1) + yt + p(yt)yN + d(yt)
R . This last issue is relevant for the dual formulation of

the problem as it allows us to avoid dealing with the Lagrange multiplier associated with (2). It turns
out that the dual representation is more difficult to characterize in terms of its dynamic behavior when
compared with the primal version.
Now, in order to close the characterization of the model, we need a terminal condition on the right hand
side of the Euler equation βtEt(U

′(A(c(ytyt+1))A1(c1(ytyt+1)), which results after iterating equation (68)
(see Constantinides and Duffie ([25]) for a discussion). Under assumptions 1-a.i, 1-a.iii, 1-e, and 1-f, this
requirement will be satisfied. The relevance of these assumptions, their relationship with the restriction
we place on βR and the sufficient conditions for the compactness needed to obtain the existence of SCE
will be proved in lemma 1, stated in the body of the paper. Note that the results below are necessary
conditions. The associated sufficient conditions for existence will be proved in theorem 1.

Proof of Lemma 3

Proof. I) Let Y = [ymin, ymax]. From assumption 1-g), lemma 1 in Braido ([21]) implies that −d(yt) <
R

1−ρ ≡ k2,min uniformly in yt ∈ Ω with ρ sufficiently close to 1. From assumption 1-a3), 1-b), 1-c)

and 1-d), equation (67) implies p(yt) = A2(c2(y
t))

A1(c1(yt))
. Definition 1-2), equation (67), assumption 1-e), 1-f)

then imply p(yt) ∈ [ y
N

cu1
, y

N

cl1
] ≡ K3 ≡ [k3,min, k3,max] yt − a.e.. Then, the collateral constraint implies

d(yt) ≤ κ(ymax + k3,maxy
N ) ≡ k2,max. Then, d(yt) ∈ [k2,min, k2,max] ≡ K2 yt − a.e.. Finally, using K2

and K3, K1 can be derived using equation (2) and Definition 1-2). Using these results, it is straightforward
to verify that limt−→∞ βtEt(U

′(A(c∗t ))A1(c∗t )) = 0. Note that the integral in Et is taken with respect
to either the density associated with χ(yt) or the ytjth-row in the transition matrix in case Y has finite
cardinality. Thus, this result also holds yt − a.e.. Then, the arguments in Lemma 2 in Kubler and
Schmedders ([41]) hold, which implies that equations (67) and (68) together with the terminal condition
on βtEt(U

′(A(ct+1))A1(c1(t+ 1))) are necessary to definition 1, as desired.
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Proof of Theorem 4

Proof. As in Kubler and Schmedders ([41]), we will start with a truncated economy t = 0, ..., T and
then extend the argument by induction. In order to show the theorem, we need to rewrite the conditions
in definition 1. Any SCE satisfies conditions A and B: Condition A

Maxd(yt)
∑
t

∑
yt

U(c1(yt), yN )µ(yt)

s.t

c1(yt) = yTt − dt +min
{
dt+1/R,R

(−1)κ(yTt + p(yt)yN )
}

and Condition B

p(yt) =
A2(yN )

A1(c1(yt))

Because of the linearity of the restriction, we can substitute c1 into the objective function in condition A.
Thus, because of lemma 3, the maximization problem is only restricted by the fact that d(yt) ∈ K2 for

all yt. Thus, {dt+1(yt)}yt ∈ K
(Y )T

2 , where (Y )T is the number of possible nodes. Note that given p, this
is a strongly concave problem restricted by a continuous correspondence. By Berge’s maximum theorem,

we know that dt+1(d0, y
t, p) will be a continuous function of p ∈ K(Y )T

3 for all d0 ∈ K2 and yt ∈ (Y )T .

Then we can use Condition B to define a continuous operator for p((y)T ), P , from a compact sect K
(y)T

3

to itself, which has a fixed point. To see this note that in the unconstrained case, the system of equations
generated by conditions A and B are block recursive (i.e., we first solve for dt+1 give dt then compute
pt for t = 0, 1, ..T ). Thus, the proof in immediate. When the collateral constrains binds, condition
B generates a finite number of roots p∗(y

t, Rn), where Rn stands for the n-th root (this is extensively
discussed in section 5). That is, p∗(y

t, Rn) = P (p∗(y
t, Rn)). Due to the compactness of equilibrium,

it is possible to locally generate an arbitrary large sequence of prices pj(y
t, Rn) which iteratively (i.e.,

pj+1(yt, Rn) = P (pj(y
t, Rn))) converges to p∗(y

t, Rn) for any n. This is possible as locally a continuous
function is either increasing or decreasing.
To show sufficiency of equations (67), (68) and the transversality condition, note that Condition A defines
a strongly concave problem with a unique solution. Thus, the set of solutions to Condition A given p(yT )
using Berge’s theorem is equivalent to the solutions found using (67), (68) and the transversality condition.
To see this, let us define the correspondence Γ(yTt , dt) =

{
dt+1 ∈ K2 : KLB,2 ≤ dt+1 ≤ R−1κ(yTt + pty

N )
}

,
where K2 = [KLB,2,KUB,2], and the return function U(c1(yt), yN ) ≡ F (yTt − dt +R−1dt+1). Then, con-
dition A can be seen as maximization problem with a control given by the sequence of iteratively feasible
debt:

{
dt+1(yT0 , d0)

}
dt+1 ∈ Γ(yTt , dt) for a given sequence of prices {pt}. This problem can be charac-

terized using the sufficient conditions in Kamihigashi ([37]): F is continuous in K2×K2 for any yTt , given
lemma 3 is bounded, F−dt ≥ 0 and it is strictly concave. To see this last property note that, even tough
the Hessian of F in K2 ×K2 is zero, the elements in the diagonal are both negative. Thus, this function
is concave. However, for any given dt, there is a unique dt+1 for each c1 and U is strictly concave in c1.
Thus, (67), (68) and the transversality condition are sufficient for a maximal

{
dt+1(yT0 , d0)

}
. Then, the

arguments above imply that adding condition B suffice to show the existence of a SCE.

Proofs for Section 3

Proof of Lemma 7

Proof. The proof of part takes place in five steps. We first show the operator A(c;CT (S))(d, y) as for
each CT (S) ∈ Cf , A(c;CT (S))(d, y) : Cp → Cp∗, is well-defined, where Cp∗(De ×Ye;CT ) ⊂ Cp, and
given by:

Cp∗(De ×Ye;CT ) = {c ∈ Cp| c = inf{ĉ(d, y), CTc (D,Y,CTi (S)), ĉ ∈ Cp, CT (S) ∈ Cf} (69)
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is closed Cp. Second, we show the mapping A(c, CT (S))(d, y) is jointly monotone on Cp×Cf , and order
continuous in c ∈ Cp for each CT ∈ Cf . Third, we show the greatest fixed point of A(c;CT (S))(d, y)
(denoted for now by c∗(CT (S))(d, y)) is strictly positive, can be computed by successive approximations
from an initial c0 = cmax for each CT ∈ Cf . The fourth step, we show the greatest fixed point is increasing
in CT (S) on Cf . Finally, in the fifth step, we show c∗(CT (S), β, R, κ)(d, y) is the unique strictly positive
fixed point in Cp of A(c;CT (S))(d, y) for each CT ∈ Cf .50
Step 1: A(c;CT (S))(d, y) : Cp → Cp∗. Fix CT ∈ Cf , c ∈ Cp, and s = (d, y, S). First, the operator
A(c;CT (S))(d, y) is well-defined. So see this, observe when c(d, y) ∈ Cp, c(d, y) = 0 for any state (d, y),
C(d′, y′; c, CT ) = 0, we define x∗uc(s

e, c, CT ) = A(c;CT (S))(d, y) = 0. So consider the case when c ∈ Cp,
c(se) > 0. As (c, CT ) ∈ Cp×Cf , the mapping Z∗uc(x, s

e; c, CT ) in equation (37) is strictly decreasing and
continuous in x, for any (d, y, S; c, CT ). Compute an implicit mapping x∗uc(d, y, S; c, CT ) in the following
equation:

Z∗uc(x
∗
uc(d, y, S; c, CT ), s; c, CT ) = 0

If x∗uc(d, y, S; c, CT ) exists, as Z∗uc is strictly decreasing and continuous in x under Assumption 1, x∗uc(d, y, S; c, CT )
will necessarily be unique (hence, a function). When x→ 0, Z∗uc(x, s

e, c, CT )→∞ by the Inada condition
in Assumption 2. Further, as x gets sufficiently large, C((R(x− yT + d), y′, R(x− yT + d, y′)→ 0, hence
Z∗uc → −∞. Then, by the intermediate value theorem, x∗uc(d, y, S, c, C

T ) exists (hence, it is well-defined
as a function).
Next, we show x∗uc(d, y, S; c, CT ) ∈ Cp∗ ⊂ Cp. We first show Auc(c;C

T (S))(d, y) = x∗uc(d, y, S; c, CT ) ∈
Cp. Again, when c(d, y) ∈ Cp, c(d, y) = 0 in any state (d, y),⇒ C(c, CT ) = 0; hence, x∗uc(d, y, S; c, CT ) =
0 ∈ Cp. Therefore, consider the case when c ∈ Cp, c(se) > 0. As CT ∈ Cf , for fixed c ∈ Cp, Z∗uc in
(37) is (strictly) decreasing in d, (strictly) increasing in y, and strictly decreasing in x; hence, at such
s = (d, y, S), the root x∗uc(d, y, S; c, CT ) is decreasing in d, and increasing in y. Further, when d2 ≥ d1 and
y1 ≥ y2, by the concavity of utility in Assumption 1, we have from the definition of the x∗uc(d, y, S, c, C

T )
in Z∗uc the following inequality

U1(x∗uc(d1, y1, S; c, CT ), yN )

R
≤∫

βU1(C(R(x∗uc(d2, y2, S; c, CT )− yT2 + d2), y′, R(x∗uc(d2, y2, S; c, CT )− yT2 + d2), y′)χ(dy′)

hence, for the root x∗uc(d, y, S; c, CT ) must make the right side of the above expression fall at x∗uc(d2, y2, S; c, CT )
in a new solution, which implies:

x∗uc(d1, y1, S; c, CT∗)− yT1 + d1 ≥ x∗uc(d2, y2, S; c, CT∗)− yT2 + d2

or
yT1 − d1 − x∗uc(d1, y1, S; c, CT∗) ≤ yT2 − d2 − x∗uc(d2, y2, S; c, CT )

Therefore, for each CT ∈ C∗, Auc(c;CT (S))(d, y) = x∗uc(d, y, S; c, CT ) ∈ Cp.
Finally, as Auc(c;C

T )(se) ∈ Cp, and Ac(C
T )(S) is independent of (d, y) at CT (S) ∈ Cf , A(c;CT )(se)

= inf{Auc(c;CT )(se), Ac(C
T )(S)} ∈ Cp∗.Therefore, we conclude A(c;CT (S))(d, y) : Cp → Cp∗.

Step 2: A(c, CT (S))(d, y) is monotone (increasing) on Cp×Cf . Take x1 = (c1, C
T
1 ) and x2 = (c2, C

T
2 ) ∈

Cp ×Cf , with x1 ≤ x2 under the pointwise partial order on the product space Cp ×Cf . First, consider
the case 0 ≤ x1 ≤ x2, where in some state (d, y, S), either 0 = c1(d, y) or 0 = CT1 (S), Then, by definition
of the operator A(c, CT (S))(d, y), A(c1, C

T
1 )(d, y, S) = 0 ≤ A(c2, C

T
2 )(d, y, S). So, now consider the case

where 0 < x1(d, y) ≤ x2(d, y), so in all states, 0 < c1(d, y) and 0 < CT1 (S). Then, we have from the

50This last step will also imply that the unique strictly positive fixed point is continous in the topology of pointwise
convergence in CT . As it will also be isotone on CT , the resulting second step operator will be order continuous on CT .
That mean in main theorem of this section, all our arguments can be make constructive as mentioned in section 3. See
Pierri and Reffett ([64]) for a discussion.
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definition of x∗uc in Z∗uc the following inequality:

U1(x∗uc(d, y, S; c1, C
T
1 ), yN )

R
=∫

βU1(C1(R(x∗uc(d, y, S; c1, C
T
1 )− yT + d), y′, R(x∗uc(d, y, S; c1, C

T
1 )− yT2 + d2), y′)χ(dy′)

≥
∫
βU1(C2(R(x∗uc(d, y, S; c1, C

T
1 )− yT + d), y′, R(x∗uc(d, y, S; c1, C

T
1 )− yT2 + d2), y′)χ(dy′)

where for i = 1, 2, the subscript on continuation consumption is used to denote.

Ci(c, C
T )(d, y, S) = inf{ci(d, y), CTc (D,Y,CTi (S))}

where recall CTc = (1 + κ
R )Y T −D + κ

Rp(C
T (D,Y )Y N . Therefore, as Z∗e is strictly falling in x, we have

x∗uc(d, y, S; c1, C
T
1 ) ≤ x∗uc(d, y, S; c2, C

T
2 )

Then, if the implied debt at dxuc(d, y, S; c1, C
T
1 ) ≤ κ(Y T −D + p(CT1 )Y N , then

A(c1, C
T
1 (S))(d, y) = Auc(c1, C

T
1 (S))(d, y)

= x∗uc(d, y, S; c1, C
T
1 )

≤ x∗uc(d, y, S; c2, C
T
2 )

else,

A(c1, C
T
1 (S))(d, y) = (1 +

κ

R
)Y T −D +

κ

R
p(CT1 (S))Y N

≤ (1 +
κ

R
)Y T −D +

κ

R
p(CT2 (S))Y N

In either case, for A(c2, C
T
2 (S))(d, y), we have A(c1, C

T
1 (S))(d, y) ≤ A(c2, C

T
2 (S))(d, y). So the operator

A(c, CT (S))(d, y) is monotone.
Next, we prove A(c;CT (S))(d, y) : Cp → Cp∗ is order continuous for each fixed CT (S) ∈ Cf . First,
some definitions. Let X be a countably chain complete partially ordered set51 and Xc = (xn)n∈N ⊂ X,
xn ∈ X, be a countable chain. We say a operator A : X → X for is order continuous if for any countable
chain Xc ⊂ X, A(x) (a) sup-preserving: A(∨Xc) = ∨A(Xc) and (b) inf-preserving: A(∧Xc) = ∧A(Xc).
We remark, order continuous operators are necessarily isotone (e.g., Dugundji and Granas ([32], p. 15)).
We now show for each CT (S) ∈ Cf , A(c;CT (S))(d, y) preserves sup operations; a similar argument works
for preserving inf operations. Fix the state (d, y), and CT (S) ∈ Cf , and denote by Cc = (cn(d, y))n∈N,
cn(d, y) ∈ Cp any countable chain in Cp. Define ∨Cc(d, y) ∈ Cp and ∨A(Cc;C

T (S))(d, y) ∈ Cp∗, which
both exist in Cp (resp, Cp∗) are both complete lattices (hence, countably chain complete). If in any
state (d, y), ∨Cc(d, y, S) = 0, then ∨A(Cc;C

T (S))(d, y) = A(∨Cc;CT (S)) = 0. Therefore, assume for
every state (d, y, S), ∨Cc(d, y) > 0. Then, we have the following inequalities for continuation tradeables
consumption C(cn;CT ) = inf{cn(d, y), CTc (D,Y,CT (S))}

C(∨Cc) = C(∨cn;CT )

= inf{∨cn(d, y), (1 +
κ

R
)Y T −D +

κ

R
p(CT (S))yN})

= ∨ inf
n

({cn(d, y), (1 +
κ

R
)Y T −D +

κ

R
p(CT (S))Y N})

= ∨C(cn;CT ) = ∨C(Cc;C
T (S))

where in the second line ∨cn(d, y) is computed, and then the infimum over two continuous functions
(∨cn(d, y), (1 + κ

R )Y T − D + κ
Rp(C

T (S))yN ) is taken over a compact set (d, y, S) ∈ D×Y × S, and

51Let X be a partially ordered set. We say X is countably chain complete if for all countable subset Xc that are a chain
(i.e., for no two elements x1, x2 ∈ Xc, x1 and x2 are ordered), ∨Xc ∈ X and ∧Xc ∈ X.
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hence continuous by Berge’s theorem, in the third line, infn is computed pointwise over (d, y) ∈ D×Y (a
compact set and hence continuous) at each n ∈ N, and this collection is then increasing pointwise in n
as Cc is a countable chain) and the sup is taken over n ∈ N. Then, the remaining equalities follow from
p continuous, and the fact that sup and inf operations over two continuous functions are each continuous
over the compact set (d, y, S) ∈ D×Y × S by Berge’s maximum theorem.
Using these facts, and substituting into the definition of Z∗uc(x, d, y, S; c, CT ), we have for the root
x∗uc(d, y, S, c, C

T ) the following equalities:

Z∗uc(x
∗
uc(d, y, S;∨cn, CT ), d, y, S;∨cn, CT ) = ∨Z∗uc(x∗uc(d, y, S;∨cn, CT ), d, y, S; cn, C

T )

= ∨Z∗uc(x∗uc(d, y, S; cn, C
T ), d, y, S; cn, C

T )

= Z∗uc(∨x∗uc(d, y, S; cn, C
T ), d, y, S; cn, C

T )

where the first equality follows from U1(c, yN ) continuous and C(∨cn, CT ) = ∨C(cn, C
T ), the second

line follows from Z∗uc continuous (pointwise) in (x, cn) for fixed CT , the third line follows from Z∗uc
continuous in x. Then, noting that for any state where collateral constraints do not bind, we have
x∗uc(d, y, S, cn, C

T ) ≤ Ac(CT )(S), our operator A(c, CT (S))(d, y) is for each n ∈ N defined as:

A(cn, C
T (S))(d, y) = inf

n
{x∗uc(d, y, S; cn, C

T ), Ac(C
T )(S)}

so we have the following:

A(∨cn;CT (S))(d, y) = inf{x∗uc(d, y, S;∨cn, CT ), Ac(C
T )(S)}

= inf{∨x∗uc(d, y, S; cn, C
T ), Ac(C

T )(S)}
= ∨ inf

n
{x∗uc(d, y, S; cn, C

T ), Ac(C
T )(S)}

= ∨A(cn, CT (S))(d, y)

= ∨A(cn;CT (S))(d, y)

where the second equality follows again from U1(c, yN ) is continuous and C(∨cn;CT ) = ∨C(cn;CT ) for
each CT ,and for the third equality again uses the fact that infn here is an increasing pointwise in n,
and the sup is then taken over n ∈ N. Hence, A(c;CT (S))(d, y) is order continuous in Cp for each fixed
CT ∈ Cf , which completes the proof of Step 2.
Remark: Before proceeding to step 3, we mention that as equilibrium fixed point comparative stat-

ics be an important question in Steps 4 and 5, for the remaining steps of the proof of this lemma,
we add to the notation for our operator for the parameters of interest, and remark that the operator
A(c;CT (S), β, R, κ)(d, y) is increasing in κ, and decreasing in (β,R) for fixed (c, CT , d, y, S). To see this,
noting c ∈ Cp is decreasing in d, U1 is decreasing in c under assumption 1, Z∗uc in (37) is decreasing in
(R, β). So, the root x∗uc(d, y, S, c, C

T ;β,R, κ) is decreasing in (β,R). Further, Ac(C
T ;R, κ) is decreasing in

R. As our operator is defined as the infimum of two decreasing mappings, A(c;CT (S), β, R, κ)(d, y) is de-
creasing in (β,R).As Z∗uc is independent of κ, butAc(C

T ;R, κ) is increasing in κ, A(c;CT (S), β, R, κ)(d, y)
is increasing in κ.
Step 3. Existence and computation he greatest fixed point of A(c;CT (S), β, R, κ)(d, y) ∈ Cp∗ ⊂ Cp.
Fix CT ∈ Cf , and denote by ΨA(CT (S), β, R, κ)(d, y) ⊂ Cp∗ the set of fixed points of mapping of
A(c;CT (S), β, R, κ)(d, y) ∈ Cp∗ ⊂ Cp.52 By definition, the least fixed point is trivial, and is c∗ = 0 for all
y ∈ Y. By step 2 above, A(c;CT (S), β, R, κ)(d, y) is order continuous on Cp. Further, A(cmax;CT (S))(d, y) ≤
cmax (with strict inequality for some states (d, y)). Hence, by the Tarski-Kantorovich theorem (e.g,
Dugundji and Granas ([32], p.15), the greatest fixed point c∗(CT (S))(d, y) can be computed as:

∧An(cmax;CT (S), β, R, κ)(d, y)→ c∗(CT (S), β, R, κ)(d, y) > 0

52Note, as as Cp∗ as Cp∗ is a subcomplete sublattce in Cp, Cp is a complete lattice, this implies the fixed point of the
mapping A(c;CT (S), β, R, κ)(d, y) ∈ Cp∗.
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where the strict positivity of c∗(CT (S), β, R, κ)(d, y) > 0 follows from the Inada condition on U1(c; yN )
in its first argument, and we note the dependence of c∗(CT (S), β, R, κ)(d, y) on deep parameters for later
reference. That proves the existence of a strictly positive greatest fixed point.
Step 4. Fixed point comparative statics. By standard fixed point statics argument for order continuous
operators, the greatest fixed point c∗(CT (S), β, R, κ)(d, y) is increasing in (CT (S), κ), and decreasing in
(β,R). Then, the associated stationary policy function for tradeable consumption conditioned on the
equilibrium collateral constraint be fixed at CT (S) ∈ Cf is given by

C(CT (S), β, R, κ)(d, y) = inf{c∗(CT (S), β, R, κ)(d, y), (1 +
κ

R
)Y T −D +

κ

R
p(CT (S))yN}

which is continuous in (d, y) ∈ D×Y by Berge’s theorem, increasing in (CT (S), κ) and decreasing in
(β,R). This completes to proof of the fixed point comparative statics claim in the lemma.
Step 5: c∗(CT (S), β, R, κ)(d, y) the unique strictly positive fixed point. This follows from an application
of Corollary 4.1 in Li and Stachurski ([43]) for each CT ∈ Cf . To see this, for fixed CT ∈ Cf put

ς(d, y) = u′((1 +
κ

R
)Y T −D +

κ

R
p(CT (d, y))yN ) (70)

= Ac(C
T )(d, y)

and restrict the first step operator A(c;CT (S), β, R, κ)(d, y) to the set Cp∗
++(De ×Ye; ς) ⊂ Cp

++ = {c ∈
Cp|c(d, y) > 0}. where

Cp∗(De ×Ye; ς) = {c| c = inf{ĉ(d, y), ς(d, y)), ĉ ∈ Cp
++}

where in our notation we make explicit the dependence of the the space Cp∗
++(De ×Ye; ς) on the upper

bound in (70). Let c1 and c2 be elements of Cp∗(De×Ye; ς). Equipped the space the Cp
++(De×Ye; ς(d, y))

with the norm
ρ(c1, c2) =‖ u′ς ◦ c1 − u′ ◦ c2 ‖

where ‖ u′ ◦ c1 − u′ ◦ c2 ‖< ∞, where u′(c) = U ′(A(c))A1(cT , yN ) is strictly decreasing in cT under
Assumption 1, and give Cp∗

++(D
e×Ye) ⊂ C

p
++(D

e×Ye) its relative distance structure.

First, from the arguments in Step 1 of this proof, A(c;CT (S), β, R, κ)(d, y) maps Cp∗
++(De ×Ye; ς) into

Cp∗
+ (De ×Ye) . Also, when c(d, y) ∈ Cp∗

++(De ×Ye; ς) is strictly positive, A(c;CT (S), β, R, κ)(d, y) > 0
(by the Inada condition in Assumption 2). By Li and Stachurski ([43], Proposition 4.1.a), the pair (
Cp∗

++(D
e×Ye; ς),ρ) is a complete metric space. As βR < 1, by Li and Stachurski ([43], Proposition

4.1.c), for each A(c;CT (S), β, R, κ)(d, y) is a contraction of modulus 0 < βR < 1 in ( Cp∗
++(D

e×Ye; ς),ρ).
Then, by the contraction mapping theorem, A(c;CT (S), β, R, κ)(d, y) has exactly one fixed point in (
Cp∗

++(D
e×Ye; ς),ρ). So, c∗(CT (S), β, R, κ)(d, y) is the unique strictly positive fixed point ofA(c;CT (S), β, R, κ)(d, y)

for CT ∈ Cf .

Corollary 16 The mapping A∗(CT ;β, κ,R)(se)) in (46) is order continuous on Cf .

Proof. As the operator in step 5 A(c;CT (S), β, R, κ)(d, y) is easily shown to be continuous in CT (S) ∈
Cf in the topology of pointwise convergence, by the Bonsall-Nadler theorem on parameterized contrac-
tions, c∗(CT (S), β, R, κ)(d, y). (e.g., see Nadler ([57], Theorem 2 and Lemma, p. 581)). As c∗(CT (S), β, R, κ)(d, y)
is also monotone increasing (in pointwise partial orders) by Step 4, c∗(CT (S), β, R, κ)(d, y) is order con-
tinuous on Cf .

Proof of Lemma 6
Proof. As c(d, y) is decreasing (resp., increasing) in d (resp., y) such that −d′(d, y) = R(yT −d)− c(d, y)
is decreasing (resp., increasing) in d (resp., in y), we have |c(d′, y′) − c(d, y)| ≤ R |(y′ − d′) − (y − d)|
when (d′, y′) ≥ (d, y), hence Cp(Se) is an (uniformly) equicontinuous collection of continuous functions.
It is therefore a compact set in the topology of uniform convergence (and hence chain complete (e.g.,
Amann ( [5], lemma 3.1)). Further, let C1 = {(ci∈I(d, y)} ⊂ Cp(Se) be an arbitrary collection. Then the
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monotonicity properties of {(ci∈I(d, y)} and its associate {(−di∈I(d, y)} are preserved under pointwise
sup and infs. Let ∨C1 = ∨c(d, y) and ∧C1 = ∧c(d, y).Hence, |∨c(d′, y′)−∨c(d, y)| ≤ R |(y′−d′)−(y−d)|
and |∧c(d′, y′)−∧c(d, y)| ≤ R |(y′−d′)− (y−d)|. So ∨C1 and ∧C1for any collection Cp(Se). So Cp(Se)
is a complete lattice.

Proof of Lemma 8
Proof. Fixing (D,Y ), the collection c∗(d, y;CT (D,Y )) ∈ Cp∗ forms an equicontinuous collection by
Lemma 6. Also, fixing (d, y), as CT ∈ Cf , CT ∈ [Cm(S), cmax], CT (D,Y ) is decreasing (resp, increasing)
in D (resp, Y ) such that the associated debt D′(D,Y ) = κ(Y T + p(CT∗(D,Y ))Y N ), D′(D,Y ) is also
decreasing (resp., increasing) in D (resp., Y ). Notng that p(C) is continuous under assumption 1, this
implies for fixed (d, y), c∗(d, y;C(D,Y )) forms on equicontinuous collection (noting that p(C) is locally
Lipschitzian and uniformly continuous in C under assumption 1). So, let C1 = (c∗i∈I(d, y, C(D,Y )) ⊂
C∗ be any arbitrary subset in C∗. When d = D, y = Y, as (c∗i (d, y, C(d, y)) is an equicontinuous
functions. Further,, the monotonicity properties over (d, y,D, Y ) where d = D, y = Y pointwise for
each c∗i∈I(d, y, C(D,Y ) and associated {D′i∈I(d, y,D, Y ) = κ(Y T + p(C(d, y,D, Y ))Y N are preserved for
∨C1(d, y,D, Y ) and ∧C1(d, y,D, Y ). Therefore, ∨C1 ∈ C∗ and ∧C1 ∈ C∗. Therefore, C∗ is a complete
lattice.

Proof of Theorem 9.

Proof. (i) Let Ψ∗(R, κ, β) ⊂ C∗ be the set of fixed points of the mapping A∗(CT ;β,R, κ)(se)) =
inf{c∗(CT (S);β,R, κ)(d, y), Ac(C

T )(se)} defined in (46). That A∗(CT , β, R, κ)(se)) ∈ C∗ is immediate,
as (a) by construction for fixed S, when d = D, y = Y, c∗(CT (S);β,R, κ)(d, y) ∈ Cp, and (b) when (d, y)
is fixed, as c∗(CT (S);β,R, κ)(d, y) is increasing in CT ∈ C∗, and CT is increasing in Y, and decreasing in
D, inf{c∗(CT (S);β,R, κ)(d, y), Ac(C

T )(S))} is increasing in Y , and decreasing in D. Further, if se is a
collateral constrained state, then d

′

A∗(CT )(s
e) = κ{yT + p(CT (d, y))yN ) is increasing in y, and decreasing

in d. Finally, as C(D,Y ) ∈ Cf , Ac(C
T )(se) = (1 + κ

R )Y T − D + κ
Rp(C

T (S))yN ≥ 0, so Ac(C
T )(se) ∈

Cf . Therefore, we have A∗(CT , β, R, κ)(se)) ∈ C∗. Then, by lemma 7, step 4, as operator A∗(CT )(se))
is monotone increasing on C∗, and by Lemma 8, C∗ is a nonempty complete lattice. Then, by Tarski’s
theorem ([79], theorem 1), Ψ∗(R, κ, β) is a nonempty complete lattice. As all the fixed points are strictly
positive, each fixed point induces a RCE.
(ii) Noting its dependence on deep parameters now, as A∗(CT , β, R, κ)(se)) is decreasing in (β,R), and
increasing in κ, by Veinott’s parameterized version of Tarski’s theorem ([81], chapter 4; also, [80], Theorem
2.5.2) , the least and greatest selections of Ψ∗(R, κ, β) exist as fixed points, and are decreasing in (β,R),
and increasing in κ.
(iii) A∗(CT , β, R, κ)(se)) = inf{c∗(CT (S);β,R, κ)(d, y), Ac(C

T )(se)} is order continuous under pointwise
partial orders on Cf as (a) Ac(C

T )(se) = 1 + κ
R )Y T − D + κ

Rp(C
T (d, y))yN is pointwise continuous

and monotone (p(C) is continuous and monotone increasing under Assumption 1), (b) by Corollary
16 c∗(CT (S), β, R, κ)(d, y) is order continuous, and hence, (c) inf{c∗(CT (S);β,R, κ)(d, y), Ac(C

T )(se)}
pointwise continuous and increasing by Berge’s theorem (as the state space is compact).
Next, we construct a strictly positive tradeables consumption function Cm ∈ C∗ that is a lower subsolution
needed to compute and compare the the least fixed point (i.e., we construct a function Cm that maps
up under A∗ (i.e, has 0 < Cm ≤ A∗(Cm;β, κ,R)(se)), Cm ∈ C∗). We do this by showing that for each
β, κ,R, the iterations infnA

∗n(C0)(se) → Cm(se) ∈ C∗ when starting the iterations from C0 = 0 and
for any initial se such that ∧y − d ≥ 0. That is, let CT (S) = 0 in all states. Then, for any state
s = (d, y,D, Y ) when d = D, y = Y, and for any (yT , d) such ∧yT − d ≥ 0, noting that tomorrow’s
”unconstrained tradeables consumption” is c(d′, y′) = c∗(0)(se) (which is the unique strictly positive
fixed point in lemma 7):

Z∗uc(x
∗
uc(0)(se), se; c, CT ), =

U1(x∗uc(0)(se), yN )

R
−

β

∫
U1(c∗(0)(R(x∗uc(0)(se)− yT + d), y′), (1 +

κ

R
)yT

′
−R(x∗uc(0)(se)− yT − d))χ(dy′)
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where by the Inada condition, x∗uc(0)(se) > 0, and compute the implied debt d′(0)(se) in all states. If in
this state se, d′(0)(se) ≤ κyT , A∗(0)(se) = x∗uc(0)(se), else

Ac(0)(se) = (1 +
κ

R
)yT − d

Notice, C0 = 0 < A∗(0)(se) in all unconstrained states se for all states that have yT −d ≥ ∧yT −d ≥ 0. To
continue the iterations, let dmax,1 be the value of d′(0)(se) when yT = ∧yT such that d′(0)(se) = κ ∨ yT ,
and now let the collateral constraint for the next iteration be

d′ ≤ (1 +
κ

R
)yT

′
+ p(A∗(0)(se))yNT

where κyT
′
< κ(yT − p(A∗(0)(se))yNt) (i.e., the collateral constraint at A∗(0)(se) = CT1 (se) will allow

for strictly more uncollateralized debt than at CT = 0. Now, recursively, when ∧yT − d ≥ ∧yT − dmax,n,
define A∗(CTn )(se) where CTn = A∗(CTn−1) in a similar manner: i.e, compute

Z∗uc(x
∗
uc(C

T
n−1)(se), se; c, CTn−1), =

U1(x∗uc(C
T
n−1)(se), yN )

R
−

β

∫
U1(c∗(CTn−1)(R(x∗uc(C

T
n−1)(se)− yT + d), y′), (1 +

κ

R
)yT

′
− CTn−1(R(x∗uc(C

T
n−1)(se)− yT − d, y′)χ(dy′)

where now we have x∗uc(C
T
n−1)(se) > x∗uc(C

T
n−2)(se) in all states yT − d ≥ ∧yT − dmax,n−1, and compute

the implied debt d′(CTn−1)(se) for ∗uc(C
T
n−1)(se) in each state. If d′(CTn−1)(se) ≤ κ(yT + p(CTn−1(se))yNT ,

A∗(CTn−1)(se) = x∗uc(C
T
n−1)(se), else

Ac(C
T
n )(S) = (1 +

κ

R
)yT − d+ p(CTn−1(se))yNT

notice 0 ≤ A∗(CT0 )(se) ≤ ... ≤ A(CTn−1(se)) , and in unconstrained states se we have 0 < A∗(0)(se) <
... < A∗(CTn−1(se)).
To complete the construction, compute infnA

∗n(0)(se) → Cm(se) which exists are A∗(CT ) is isotone
(order continuous, actually), and let dmax = supn dmax,n. Further, by construction Cm(se) is strictly
positive in all states and satisfies all the conditions in C∗.
We then are now ready to complete the proof of the theorem. By the definition of Cm(S), 0 < Cm(S) ≤
A∗(Cm;β, κ,R)(d, y)Further, for states (1 + κ

R )Y T − D < 0, 0 ≤ Cm(S) < c∗(Cm;β, κ,R)(se). Fur-
ther, assuming an asymptotic positive marginal utility of tradeables consumption in Assumption 1,
A∗(cmax;β, κ,R)(d, y) < cmax. Then the result on computing the least and greatest RCE in the the-
orem follows from Dugundji and Granas ([32], p.15).

Proof of Theorem 10

Proof. Notice the order continuity of the operator A∗(C;β, κ,R)(se), it follows from a directly application
of the main result in Balbus, et. al. ([9], Proposition 2).

Proof of Theorem 11

Proof. With the addition of Assumption 3 to Assumptions 1(a-e), 1(g), and 2, we can redefine the RCE
fixed point problem into a single-step operator and then construct the RCE as in step 5 of the proof of
Lemma 7. In particular, in equation 35, recalling the definition of the space Cp∗

++(De ×Ye; ς) ⊂ Cp
++ =

{c ∈ Cp|c(d, y) > 0} in the proof of Lemma 7, for c ∈ Cp∗
++(De ×Ye; ς), define

C(c, CT )(d, y, S) = C(c, cT∗c (d, y)) = inf{c(d, y), cT∗c (d, y)}
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where cT∗c (d, y) is given by equation 71. Then in the definition of our fixed point operator A(c, CT )(se) in
equation 42, set the operator Ac(C

T )(S) = cT∗c (d, y) in equation so our fixed point operator A(c, CT )(se)
under Assumption 3 now simplifies to the following

A(c, cT∗c )(se) = inf{Auc(c, cT∗c )(se), cT∗c (d, y)} when c > 0 (71)

= 0 else

where in the constrained states, the RCE tradables consumption is cT∗c (d, y) and unique.
The operator A(c, cT∗c )(se) has a unique strictly positive fixed point cT∗(se) via the application of the
Li-Stachurski version of the contraction mapping theorem discussed in step 5 in Lemma 7 noting as before
Cp∗

++(De ×Ye; ς) ⊂ Cp
++ = {c ∈ Cp|c(d, y) > 0} is a complete metric space under the norm

ρ(c1, c2) =‖ u′ς ◦ c1 − u′ ◦ c2 ‖

where ‖ u′ ◦ c1 − u′ ◦ c2 ‖< ∞, where u′(c) = U ′(A(c))A1(cT , yN ) is strictly decreasing in cT under
Assumption 1, and give Cp∗

++(D
e×Ye) ⊂ C

p
++(D

e×Ye) its relative distance structure. So the unique
strictly positive RCE tradables consumption is

c∗(d, y) = inf{cT∗(d, y), cT∗c (d, y)}

Finally, the contraction mapping theorem implies global stability of iterations. That is, we have for any
initial c ∈ Cp∗

++(De ×Ye; ς),

A∗n(c)(d, y) = cT∗(d, y)

the unique consumption of tradables in the unconstrained states, and

c∗(d, y) = inf{A∗n(c)(d, y), cT∗c (d, y)}
= inf{cT∗(d, y), cT∗c (d, y)}

Proofs for Section 4

Proof of Theorem 15

We will prove the theorem using several preliminary lemmas. First, it will be shown that equation
(68), when it holds with equality, generates a sequence of increasing level of debt d+ for any d as long
as yT = ylb if ylb is sufficiently small. Then, using this result, we show that starting from any initial
condition, the collateral constraint will bind in finite time. This lemma will be useful to show the existence
of an accessible atom in the third lemma. Then, the forth lemma show the existence of a unique invariant
ergodic measure.

From now on we will assume that assumption 1 holds. Additionally, assume that in any SCE we have
dt+1 ≤ H with H ≡ κ(yub +Puby

N ). Lemma 17 will show that, once the collateral constraint is imposed,
H will not bind in equilibrium.

Lemma 17 In equilibrium when Rβ < 1, we have d++ > d+ > d for any d ∈ K2 if the collateral
constraint does not bind, yT = yT+ = ylb and ylb ∈ (0, ε) with ε > 0.
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Proof. Note that in equilibrium, WLOG it is possible to write U ′(A(c1, c2))A1(x1) ≡ u′(yT−d+R−1d+).
Then, under the assumptions stated in the lemma, it is clear that equation (68) can be written as:

u′(yT − d+R−1d+) = Rβ
∑
yT+

u′(yT+ − d+ +R−1d++)q(yT+)

Where d++ ∈ K2. Suppose, to generate a contradiction, d ∈ K2 and d+ ≤ d. Then, as R > 1 for
ε sufficiently small, we have u′(yT − d + R−1d+) −→ u′ub, where u′ub can be constructed using the
definition of u′ together with assumptions 1 − a1 and 1 − c and 1 − f . Then, as Rβ < 1, u′ub >
Rβ
∑
yT+
u′(yT+ − d+ +R−1d++)p(yT+) which implies that d+ is not optimal. Then, we must have d+ > d

as desired. Replacing d with d+, we get d++ > d+.

Lemma 18 For any z ∈ Z the sequence {z, φ1, φ2, ...}, generated by (Z,Pϕ), will hit the collateral
constraint in finite time.

Proof. Take any yT0 ∈ Y , d0 ∈ K2 and a sequence with τ elements in Y ×Y × ...×Y with {y0, ylb, ..., ylb}.
Then, the results in section 3 imply that, as long as the collateral constraint does not bind, dτ+1(yTτ , ylb, ...,
ylb, y0; d0) = d′(yTτ , d) and Pτ (yTτ , ylb, ..., ylb, y0; d0) = P (d′(yTτ , d)), where the equalities follow from ap-
plying iteratively backwards the minimal state space policy function on equations (49) and (50) together
with the envelope theorem, both derived in section 3. Note that the dependence of P on yN has been
omitted. Further, if the collateral constraint does not bind, we know from section 3 that d′(yTτ , d) /
P (d′(yTτ , d)) is decreasing /increasing in yTτ for each d. Further, d′(yTτ , d) / P (d′(yTτ , d)) is increasing
/decreasing in d for each yTτ . Lemma 20 below formally proves these claims. Then, using Lemma 17 we
know that {d1, ..., dτ+1} / {P0, ..., Pτ−1} is a (strictly) increasing / decreasing sequence which in turn
implies that gt(y

T
t , ylb, ..., ylb, y0; d0) ≡ κ(yTt + Pty

N ) − dt+1 is a strictly decreasing sequence in t. To
complete the proof we must show that: i) there exists a yTτ ∈ Y such that gτ ≤ 0 and ii) τ <∞.
i) Suppose the collateral constraint does not bind. Then, dt+1 −→ H. By the definition of H and the
fact that dt+1 = d′(ylb, dt), we know that |H − dt+1| = H − dt+1 < ε for t ≥ Nε. For any given κ, we
can take ε ≡ κ(yub +Puby

N )− κ(ylb +Puby
N ) = κ(yub − ylb). Then, d′(ylb, dt) > κ(ylb +Pub), which is a

contradiction. Then, the collateral constraint binds. That is, gτ ≤ 0 for gτ (ylb, ylb, ..., ylb, y0; d0)
ii) Simply take τ = Nε.
Note that H can be defined for any yT > ylb which in turn implies that ε can be assumed to be arbitrarily
small as desired. As the initial conditions were arbitrary, the proof is completed.

Before stating and proving the next lemma we need some additional notation. Let z ∈ Z. Then, any solu-
tion to the system defined by equations (52) to (56) will be denoted z(d, yT ) ≡ z = [d yT yN c1 c2 p m].

Lemma 19 Let J1 ≡ Z, where Z was defined in section 4.1. There is a point d∗ ∈ K2 with dub >
d∗ > dlb and a selection ϕ ∈ Φ, where Φ is the equilibrium correspondence which contains all Generalized
Markov Equilibria, such that for any (yT0 , d0) ∈ Y ×K2, there is a sequence {φ0, φ1, φ2, ...}, generated by
(J1, Pϕ), which satisfies φτ = z(d∗, ylb) ∈ J1 with τ <∞.

First, some notation and a auxiliary lemma. Let d′(d0, ylb) be the policy function obtained from solving
the optimization problem in the RE defined in section 3 for the unconstrained case. It can be seen from
the results in section 3 that, as long as we are dealing with the unconstrained problem, d′(d0, ylb) is
independent of prices and, thus, we can take this policy function for any cT . Then, ϕ ∈ Φ satisfies:

d′(d∗, ylb) = κ

[
ylb + yN

(
A2(yN )

A1(ylb + (d′(d∗, ylb)/R)− d∗)

)]
(72)

52



U ′ {A1 (ylb + (d′(d∗, ylb)/R)− d∗)} = βREϕ[−d′(d∗, ylb)] (73)

Where ϕ is defined by taking any vector d′′(y′) ∈ K2 for any y′ ∈ Y such that:

U ′ {A1 (ylb + (d′(d∗, ylb)/R)− d∗)} = βR
∑
y′ [U

′ {A1 (y′ + (d′′(y′)/R)− d′(d∗, ylb))}]q(y′)

Before proving Lemma 19, we need a preliminary lemma. It simply proves that, in an unconstrained
framework, in partial equilibrium, more ”disposable income” means more consumption and less debt.

Lemma 20 Let yD ≡ yT − d and c1
(
yD
)

be a tradable optimal unconstrained consumption. Then, in

any unconstrained equilibrium, yD > ỹD implies i) c1
(
yD
)
> c1

(
ỹD
)

and ii) d′
(
yD
)
< d′

(
ỹD
)

Proof. i) Suppose not. Then, yD > ỹD and c1
(
yD
)
≤ c1

(
ỹD
)
. Then, the budget constraint in any

unconstrained equilibrium implies d′
(
yD
)
< d′

(
ỹD
)
. As c1

(
yD
)

and d′
(
ỹD
)

are optimal, we have:

U ′
(
A1(yD)

)
≥ U ′

(
A1(ỹD)

)
= βRE

(
−d′

(
ỹD
))
> βRE

(
−d′

(
yD
))

Which implies a contradiction as c1
(
yD
)

and d′
(
yD
)

are assumed to be optimal.

ii) Let yD > ỹD and c1
(
yD
)
> c1

(
ỹD
)
. Assume, in way of contradiction d′

(
yD
)
≥ d′

(
ỹD
)
. Then:

U ′
(
A1(yD)

)
< U ′

(
A1(ỹD)

)
= βRE

(
−d′

(
ỹD
))
≤ βRE

(
−d′

(
yD
))

Which implies a contradiction as c1
(
yD
)

and d′
(
yD
)

are assumed to be optimal.

Lemma 21 In any unconstrained equilibrium, there is a decreasing sequence of debt with increasing
tradable consumption for the same level of tradable output, yT

Proof. Let d′(dt, y
T
t ) = dt+1. Thus, U ′

(
A1(yTt − dt + (dt+1/R))

)
= βRE (−dt+1). Take d̃t < dt. Then

U ′
(
A1(yTt − d̃t + (dt+1/R))

)
< βRE (−dt+1). Then, there exist d̃t+1 < dt+1 with (d̃t+1/R) − d̃t >

(dt+1/R) − dt > 0 such that U ′
(
A1(yTt − d̃t + (d̃t+1/R))

)
= βRE

(
−d̃t+1

)
. By letting dt+1 = d̃t,

d̃t+1 = d∗t+2 and d̃t = d∗t+1, dt = d∗t , we obtain the decreasing sequence
{
d∗t+i

}
i

which generates a

increasing consumption sequence
{
c∗1,t+i

}
i

because (d̃t+1/R)− d̃t > (dt+1/R)− dt > 0 and yTt+i = yT for
all i.

Lemma 22 The selection ϕ ∈ Φ exists.

Proof. Lemma 20 implies that there exist d∗ ∈ K2 such that:

d′(d∗, ylb) = κ

[
ylb + yN

(
A2(yN )

A1(ylb + (d′(d∗, ylb)/R)− d∗)

)]
This is possible as the LHS / RHS of this equation is increasing / decreasing in d, both sides are continuous
functions of d according to the results in section 3.2 and

d′(0, ylb) < κ

[
ylb + yN

(
A2(yN )

A1(ylb + (d′(0, ylb)/R))

)]
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That is the collateral constraint does not bind if debt is non-positive.

Take any yT0 , d0 ∈ J and a sequence {yT0 , ylb, ..., ylb} of τ + 1 elements. The results in Lemma 17 imply
that, as long as the collateral constraint does not bind in period τ <∞ (this assumption can be imposed
WLOG due to Lemma 18), there is a constant sequence of tradable consumption {c1,0, ...., c1,τ−1} with
c1(yT0 , d0) = c1,t for 0 ≤ t ≤ τ − 1 which can be implemented as a SCE. Further, as it is shown in Lemma
20, it is possible to choose c1(yT0 , d0) to be decreasing in d0 and increasing in yT0 . Equipped with these
paths we will deal with a fraction of all possible initial conditions in Y ×K2. In order to deal with the rest
of the space we will use 17 and the inequality nature of the Euler equation to deal with the constrained
case, if necessary.
Now take yT0 = ylb and d0 = d∗ with κ(ylb + P (x1(ylb, d∗))y

N ) = d′(ylb, d∗). The existence of d∗ follows
from Lemmas 19 and 22. This point defines the ”atom” and we must show that there exist a positive
probability sequence starting from any initial condition that hits it in finite time. Intuitively, the atom
will be defined as the level of wealth, d, for which the collateral constraint binds with equality at t = 0
for the lowest possible level of current income, yT0 . Thus, the strategy of the proof is to show that
regardless of the initial condition, it is possible to construct a positive probability path that will hit the
constraint: a) later, b1) with a bigger tradable consumption level and with more debt, both today or
b2) with more debt tomorrow (and not necessarily with more consumption today). Call this last point
z(dτ , yτ ). First, note that, as the collateral constraint hits with equality in the atom, for any other path,
we will have more debt but not necessarily more consumption. In any case, the euler inequality implies
that z(d∗, ylb) satisfies the system of equations which defines the GME due to the strict inequality in
the primal formulation of this equation. That is, the qualitative properties of z(dτ , yτ ) imply, due to the
inequality in the Euler equation in the primal characterization of the sequential equilibria coupled with
the backwards nature of the definition of any GME, that z(dτ , yτ ) and z(d∗, ylb) are both a solution to
the constrained system of equations which define the GME. This last claim is proved in Lemma 22.
We will now show that the chain will hit the atom, z(d∗, ylb), starting from any initial condition in
J = Y ×K2. We will proceed in 2 regions: i) d0 < d∗ and yT0 = ylb, ii) d0 > d∗ and yT0 > ylb. Intuitively,
region i) insures, due to Lemma 20, that the collateral constraint will not bind at t = 0 and that initial
tradable consumption is bigger than the atom level. Using Lemma 17 and 18 we will construct a positive
probability sequence with increasing debt which insures the ”reversion” to the atom at the time the path
hit the constraint. Region ii) has 2 possible sub-regions. ii.a) yT0 − d0 > yTlb− d∗, in which case again due
to Lemma 20 we will have bigger initial consumption and smaller debt when compared with the atom
level. Thus, we can construct a sequence with increasing debt in an unconstrained environment using the
arguments in region i) until we exceed the atom’s level and revert to it when the path hit the collateral
constraint. ii.b) yT0 − d0 < yTlb− d∗, in which case the consumption level is smaller when compared to the
atom level due to Lemma 20. Thus, we must construct an increasing consumption sequence in order to
revert to the atom. In this case there are multiple possibilities: the constraint can be bigger (ii.b.1) or
smaller (ii.b.2) compared with the atom level. In region ii.b.1 an increase in consumption will take place
in a constrained environment if p is not sufficiently sensitive or elastic (ii.b.1.1). Contrarily, if prices are
sufficiently elastic, an increase in consumption will take place in an unconstrained environment (ii.b.1.2).
Finally, in region ii.b.2, when the constraint is bigger with respect to the atom level, as debt is also bigger
we may have a constrained or an unconstrained regime. In these cases we can use the results in regions
ii.b.1 to generate an increasing consumption level until we reach the atom consumption.
i) For d0 < d∗ and yT0 = ylb, we have κ(ylb+P (c1(ylb, d∗))y

N ) < κ(ylb+P (c1(ylb, d0))yN ) and d′(ylb, d0) <
d′(ylb, d∗) from Lemma 20 which, using Lemma 18, implies that for the sequence {φ0, ...., φt} the chain
will hit the collateral constraint in t = τ > 0 with dτ > d∗.
We claim that the system of equations given by (52) to (56) can also be solved by z(d∗, ylb) and thus
we have that {φ0, ...., z(d∗, ylb)} is an equilibrium trajectory. To prove this claim, note that from the
definition of an equilibrium correspondence, we have that any d in z with z ∈ Z that solves U ′{A1(ylb +
R−1κ(ylb +P (c1(ylb, d0))yN )− d)} ≥ E(m+) is a predecessor of z+(yT+) for any yT+ ∈ Y . As U ′{A1(ylb +
R−1κ(ylb +P (c1(ylb, d∗))y

N )− d∗)} > E(m+), equations (52) to (56) imply that {φ0, ...., z(d∗, ylb)} is an
equilibrium trajectory as desired.
ii) For d0 > d∗ and yT0 > ylb.
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Region ii.a): yT0 − d0 > ylb − d∗. As yD is bigger in this case when compared with the atom level and we
have more tradable output, d′(yT0 , d0) < κ(ylb +P (c1(ylb, d∗))y

N ) < κ(yT0 +P (c1(ylb, d0))yN ) and we can
use the arguments in region i).
Region ii.b): yT0 − d0 < ylb − d∗.
Region ii.b.1): κ(yT0 + P (c1(yT0 , d0))yN ) < κ(ylb + P (c1(ylb, d∗))y

N ) < d′(yT0 , d0). That is, the collateral
hits at t = 0 with c1(ylb, d0) > c1(yT0 , d0) which implies that we must generate an increasing sequence of
consumption from the constrained regime. Note than when we increase tradable consumption, depending
on the sensibility of p with respect to cT , we may enter into a constrained (ii.b.1.1) or an unconstrained
regime (ii.b.1.2).
Region ii.b.1.1): 1 ≥ κyNR−1p′, where p′ is the derivative of (52) with respect to d+. As c1(ylb, d∗) >
c1(yT0 , d0) and

κ(yT0 + P (c1(yT0 , d0))yN ) < κ(ylb + P (c1(ylb, d∗))y
N )

< d′(yT0 , d0)

we have:

U ′{A1(yT0 +R−1κ(yT0 + P (c1(yT0 , d0))yN )− d0)} > U ′{A1(ylb +R−1κ(ylb + P (c1(ylb, d∗))y
N )− d∗)}

= E(m+;−κ(ylb + P (c1(ylb, d∗))y
N ))

> E(m+;−κ(yT0 + P (c1(yT0 , d0))yN ))

The above inequality implies that any path in this region with P (c1(yTt , dt)) < P (c1(ylb, d∗)) is optimal.
By setting

{
yT0 , ylb, ..., ylb

}
we can construct an increasing sequence

{
P (c1(yT0 , d0)), P (c1(ylb, d1)), ..., P (c1(ylb, dτ ))

}
converging to P (c1(ylb, d∗)) as desired.
Region ii.b.1.2): 1 < κyNR−1p′. In this case an increase in consumption take us to the unconstrained
region. Using Lemma 21, we can generate a path

{
yT0 , y

T
1 , ..., y

T
τ

}
, with yTt > ylb; t = 1, ..., τ , of increasing

consumption and decreasing debt until we get c1(ylb, d∗) < c1(yTτ , dτ ). Then, set
{
yTτ , ylb, ..., ylb

}
The

argument in region i) insure that there is a finite time, τ + τ1, such that the path hits the atom.
Region ii.b.2): κ(yT0 + P (c1(yT0 , d0))yN ) > κ(ylb + P (c1(ylb, d∗))y

N ) < d′(yT0 , d0). In this case, we
can be either in the unconstrained or constrained case. For the former, we can use the same argu-
ments as in section ii.b.1.2) as we need a path of decreasing debt and increasing consumption. For
the latter, however, note that by setting

{
yT0 , ylb, ..., ylb

}
we enter into the ii.b.1) region for t > 0 as

κ(ylb + P (c1(ylb, dt))y
N ) < κ(ylb + P (c1(ylb, d∗))y

N ) as dt > d∗.

Lemma 23 the results in Lemmas 17 to 19 imply that there exists a selection ϕ ∼ Φ and a Markov
process (J1, Pϕ) that has an accessible atom, z(d∗, ylb), and is Pϕ(z(d∗, ylb), .)−irreducible

Proof. Follows directly from proposition 1.

Lemma 24 Let (J1, Pϕ) be the process defined in Lemma 19. If the collateral constraint hits at time
τ > 0 with dτ > d∗ and c1,τ > c1(ylb, d∗) or with dτ+1 > d(d∗, ylb), then {φ0, φ1, ..., φτ−1, z(d∗, ylb)} is an
equilibrium trajectory.

Proof. If the collateral constraint binds for consumption c1,τ and debt dτ , then it must satisfy U ′{A1(yTτ +
R−1κ(yTτ +P (c1,τ )yN )−dτ )} ≥ E(m+). The conditions in the remark imply that U ′{A1(ylb+R−1κ(ylb+
P (c1,τ )yN )− d∗)} > E(m+) as desired. Next note that

U ′{A1(yTτ +R−1dτ+1 − dτ )} ≥ U ′{A1(yTτ +R−1d(d∗, y
T
τ )− d∗)}

= E(m+(d(d∗, y
T
τ ))) ≥ E(m+(dτ+1)).
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Lemma 25 Let (J1, Pϕ) be the Markov process in Lemma 19. Then, (J1, Pϕ) has a unique, ergodic,
invariant probability measure.

Proof. Note that Lemma 19 imply that P τϕ(z(d∗, ylb), {z(d∗, ylb)}) > 0 with τ < ∞. Given the results
in Remark 4.2.1, proposition 4.2.2, theorem 8.2.1 and theorem 10.2.1 in Meyn and Tweedie ([53]) imply
that (J1, Pϕ) has an unique invariant measure. As τ <∞ for any initial condition in J1, theorem 10.2.2
in Meyn and Tweedie ([53]) implies that the invariant measure is a probability measure. As it is unique,
the Krein-Milman theorem (See Futia, [34]) implies that this measure is ergodic.

Online Appendix

This section contains additional details that complements the body of the paper.

Supplementary material for section 2

This section characterizes the sequential competitive equilibrium when βR < 1 with Y finite. In this
paper, we do not discuss existence issues for the case that βR ≥ 1. In a related paper, Pierri and
Reffett ([64])) identify sufficient conditions for extending the results to this case (including setting with
more general shocks and continuous shock spaces). The critical complication for introducing βR ≥ 1
is obtaining compactness when studying the long-run behavior of such a model relative to stationary
equilibrium. Turns out, if we endow the model with a satiation point, the equilibrium has a degenerate
steady state as consumption converges to a Dirac measure a.e. It is possible, as in Hansen and Sargent
([38]), to allow for a generalization of this last type of equilibrium by assuming that the satiation point
(called “bliss point”) is a random variable. Although it can be useful in some applications (i.e. asset
pricing with no trading, etc.), this type of equilibrium has really restrictive dynamics. Taking into account
the question at hand, we defer the discussion of this case to a separate paper.
An example of the restriction on preferences implied by Assumption 1 can be seen in the table below.
Note that we actually prove the existence of the RCE (which is a SCE) for case 1 and 3.

Pref. Does SCE Exist? c > 0? MU bounded? Are Homothetic?

CD Unknown YES NO YES
LOG Unknown YES NO YES
CES Unknown YES NO YES

Mod. CD Theorem 1 YES YES, above NO
Mod. LOG Theorem 1 YES YES, above NO
Mod. CES Theorem 1 YES YES, above NO

Mod. CES 2 Theorem 1 YES YES, AF zero NO
Table 1: Restriction on preferences

where the abbreviation “MU” stands for “marginal utility” and “AF” for “away from” . Below we provide
a concrete parametrization of preferences for each of the cases presented in table 1. Note that Theorem
4 requires MU to be bounded above and away from zero. The requirement that MU is bounded above
breaks the homotheticity of preferences (i.e., Inada conditions), but the assumption of bounded away
from zero allows for the homothetic case. As we will later show, the existence of minimal state space
recursive equilibrium can be shown even without an finite upper bound on marginal utility; but the
existence of a maximal consumption still requires MU of consumption be bounded away from zero.
More to the point, the proposed utility functions can be made arbitrarily close to their homothetic
counterpart and the numerical section in this paper, which suggests that assuming boundedness, instead
of imposing restrictions on marginal utility, and using standard CES preferences works in practice. We
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need bounds on marginal utility to ensure the compactness of the equilibrium set in order to complete
the existence proof of the SCE. As the numerical results in this paper use extensively the quantitative
implications of this last type of equilibrium, our simulations in this paper in section 5 are well behaved
under the standard CES preferences.53

Finally, this assumption on boundedness of MU in Assumption 1.f can be replaced with standard Inada
conditions in the case proving the existence of RCE as we show in the next section of the paper. That is,
RCE stochastic dynamics are much simplier and their characterization can can be greatly sharpened using
Euler inequality methods. In particular, guaranteeing the uniform interiority of tradeable consumption
can be done directly when constructing the existence of RCE. We should mention, the existence of RCE
under Assumption 1.f can also be proved (i.e., standard Inada conditions are not needed for the existence
of RCE). What is needed is the existence of a sufficiently high MU’s of tradeables consumption near
zero tradeables consumption to guarantee stochastic equilibrium dynamics do not (almost everywhere)
converge to 0. Further, RCE are, of course, a subset of SCE. But as in quantitative work, it appears
that stochastic dynamics generated under Assumption 1.f vs. Inada conditions are not different, we do
consider the question of the existence of SCE under the boundedness of MU conditions in Assumption
1.f so we allow for the possibility that SCE exist that need to be RCE.

Examples of utility functions in table 1

This section contains concrete examples of utility function which ensure that marginal utility is bounded.

Mod. CD (c1 + γ)
α

(c2 + γ1)
β

u : X → <, X ⊇ <2
+, γ, γ1 > 0, c ∈ X ⇒ c+ [γ, γ1] > 0

The “Mod. CD” preferences are defined over a consumption set which includes the ”zero”-vector and
γ insures that marginal utility remains bounded above over the entire consumption set, X. The ”Mod.
LOG” and ”Mod. CES” are similar. Just replace (c1 + γ)

α
(c2 + γ1)

β
by ln (c1 + γ) + ln (c2 + γ1) and

by (a (c1 + γ)
α

+ a (c2 + γ1)
α

)(1/a) respectively with a > 0. The ”Mod. CES 2” are rather different as
they are intended to keep MU bounded away from zero. In particular,

Mod. CES 2 (a1 (c1)
(1−α)

+ (1− α)a2c1 + b1 (c2)
(1−α)

+ (1− α)b2c2)(1/(1−α))

u : X → <, X ⊇ <2
+, α > 1, a1, a2, b1, b2 > 0

If we combine ”Mod. CES” with ”Mod. CES 2” we insure that MU remains bounded above and away
from zero, which in turn guarantees that p is positive and finite. These are sufficient conditions for the
existence of an a.e. compact equilibrium.

Supplementary Material for Section 5.2

In order to continue with the description of possible multiple equilibria we must incorporate 2 restrictions.
The first comes from P > 0 as figures 1 and 2 don’t guarantee that P1 > 0, even tough any meaningful
equilibrium must have positive prices (i.e., P ∗ > 0). From equation (61) it is clear that if P = 0, then
d = ylb(1 + κ/R) ≡ dP=0(ylb) and d < dP=0(ylb) implies P > 0. Thus, dP=0(ylb) is the upper bound on
debt, dub. Further, we must guarantee that consumption remains positive. Using equation (61) again we
can see that the locus, on the plane (d, P ), for which consumption equals 0 is given by:

53Non-homotheticity of preferences have been used recently in many strands of the macroeconomics literature. For
example, Rojas and Saffie [66] recently has explored the importance of non-homothetic preferences in models of sudden-
stops. In the context of precautionary savings models, Straub ([77]) found that under homothetic preferences consumption
is linear in permanent income, a fact which is at odds with data. He extends the canonical precautionary savings model
with heterogeneous agents to include non-homothetic preferences.
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d = yT + (κ/R)[yT + PyN ] (74)

Assume κ/R = 1. Clearly, in the (d, P ) plane, equation (74) is a linear function P = dR − 2yTR.
Moreover, P (yT ) ≡ −2yT /yN = −2yTR, where the second equality follows from yTR = 1 which was
imposed above, defines the intersection of this locus with the P -axis (i.e. the value for P that generates
cT = 0 with d = 0) and d2(yT ) ≡ 2yT with the d-axis (i.e. the value for d that generates cT = 0 with
P = 0) 54. Above this locus lie all the pairs (d, P ) for which cT > 0. Applying the implicit function
theorem to (61) for P > 0, we get:

DP
Dd = −1

(
yN [1/2P−1/2 − κyN ]

)−1
< 0 if P <

[
2κyN

]−2
and DP

Dd > 0 if P >
[
2κyN

]−2
.

Remarkably, note at point the P ∗ =
[
2κyN

]−2
, we get DP/Dd = −∞. This point can be used in (61)

to obtain f(P ∗) = yT∗(R + κ) = K(0), the value for yT which generates P ∗ in (61) when d = 0. Any
yT < yT∗ will generate a discontinuity in equation (61) in the (d, P ) plane for d > 0. We call this point
E. Figure 3 combine figures 1 and 2 with the 2 restrictions mentioned above.

For expositional purposes we have replaced ylb with Y min, yub > yT > ylb and yub = Y max. Above
the line joining the points d2(Y ) and P (Y ), to the right of vertical axis and over the locus formed by
f(p) = K(d) we can find the admissible real exchange rate. If yT = Y min and yT is close to 0, the set
of debt levels that admit multiple equilibrium is negligible. However, when yT = yT∗, this set is formed
by all debt levels between 0 and d2(yT∗).
Summing up, equations (61) and (74) gives the admissible pairs (d, P ) in figure 3. Note that P (yT ) /
d2(yT ) are all functions of yT . Thus, an increase in this variable will shift both locus to the right, as
depicted in figure 3. Thus, the set of admissible equilibria increases along with yT as can be seen by
looking at the region formed by points A − B on the P -axis. That is, between 0 and d2 there are 2
admissible exchange rates for each debt level d.

The last figure completely describes multiplicity. With respect to figure 3, we added the locus h. The
claim above shows that: i) below h we can find the optimal pairs (d, p), ii) there are at least 2 optimal
contours which insure the existence of multiple equilibrium for at least 2 shocks.
Up to now, in this sub-section, we have been silent about optimality. Assume that for some exchange
rate level, P0, there is a debt level d0 which satisfies equation (56) for yT = ylb. That is, d0 satisfies:
U ′{A1(ylb +R−1κ{ylb + P0y

N} − d0)} ≥ E(m+). Taking into account that we are assuming that (d, p)
belong to a compact set, the existence of d0 and P0 follows without loss of generality given theorem 4 in
section 2. Note that any d = d0 + (yT − ylb)(1 + κ/R) will also satisfy equation (56). Now, the definition
of d2(yT ) implies: d2(Y ) − d2(Y min) = (Y − Y min)(1 + κ/R). As can be seen in figure 3, if any d0
is in the locus formed by f(p) = K(d) (i.e. which satisfies equation (61)) with (d, P ) >> 0, above the
zero-consumption line d2(Y min)−P (Y min) line (i.e. which is above equation (74)) and satisfies equation
(56), then d = d0 + (Y − Y min)(1 + κ/R) is in the locus formed by (61) and above (74) but with the
last equation crossing the d-axis at d2(Y ). By replacing Y with yT > ylb and Y min with ylb, we know
that d will also be feasible and optimal if d0 is so: it will be to the right of the vertical axis, above the
d2(yT )-P (yT ) line, over the locus formed by f(p) = K(d) (i.e. it will be feasible) and will satisfy equation
(56) (i.e. it will be optimal). Finally, we must show that any the pair (d, P ) satisfies the optimality
requirement (i.e. it satisfies (56)) and find a contour in the plane in order to separate optimal from non-
optimal pairs. We will start with (d0, P0). Take any m+(yT+) from Z which satisfies equation (55) with

54In this section we are assuming the SG-U preferences. That is, the relative price P from optimality is just:

p(C) =
1− a
a

(
CT

Y N

)1/ξ

This implies that P = 0 if and only if cT = 0, which why the value for d that generates both restrictions is the same, d2.
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Figure 3: Genericity of Multiple Equilibria: Feasibility and Intra-temporal optimality
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The feasible set of any GME is depicted in this figure. The P − d2 locus defines the “non-negative consumption region”.
The “x-axis” defines the debt region. The “y-axis” the positive prices region. Optimality according to the intra-temporal
optimization condition in the constrained regime is represented by the oval contours. Note that for low tradable income
levels, this last locus is “truncated” as can be seen in figure 1. There is a level of tradable income, yT , for which the whole
f locus contains prices in the constrained regime as K(0) = R/2κ. For bigger income levels, prices are not determined in
the constrained regime and, thus, they do not belong to the f = K locus.

d+ = κ{ylb+P0y
N} and any given d++. Equation (75) below, when it holds with equality, defines a locus

increasing in the (d, P ) plane which determines optimality. Call this map h(d, P ) = 0. Take any (d0, P0)
over (75). Any P ≤ P0 is optimal because of the weak inequality in the primal optimization problem in
the SCE. Thus, optimality lies below (75). Moreover, note that this locus in increasing in d++. Thus,
h(d, P ; d++) = 0 As can be seen from the definition of GME, d++(y+) for each y+ ∈ Y defines a selection
of the equilibrium correspondence and, thus, 1 of possible multiple GME. As the upper bound on d++

can be chosen freely 55. Then, there is always a value in [dl, du], the set which contains d by assumption,
which insures optimality. That is, which satisfies:

U ′A1

(
yT +R−1κ

(
yT + PyN

)
− d
)
≥ βRE[m+

(
−R−1κ

(
yT + PyN ; d++

))
] (75)

Figure 4 illustrates these facts. Note that the multiple displacements of (61) in solid lines form the

55For expositional purposes, in this subsection we are assuming that endogenous variables lie in a compact set. Thus, the
existence of an arbitrarily large upper bound can be insured without loss of generality. However, in section 2, we showed
that it depends on the bounds on marginal utility (see Table 1).
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Figure 4: Genericity of Multiple Equilibria: Feasibility and Optimality
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The h locus contains the (d, P ) pairs which satisfy intertemporal optimality with equality in the constrained regime.
Below it we can find the optimal (d, P ). As h is increasing in d++(y+), which represents the selection of the equilibrium
correspondence Φ, we can choose h to be conveniently located. In the ergodic case, the equilibrium correspondence could
be a truncated version of figure 4. Lemma 3 and theorem 4 insures that the intersection of the region below h and the
region defined by the oval contours in the non-negative orthant formed by the (d, P )-axis is not empty.

equilibrium correspondence of some GME for an arbitrarily large selection ϕ ∈ Φ. That is, figure
4 below presents the full picture as it combines the feasible pairs in figure 3 with the optimal ones in
h(d, P ; d++) = 0. Note that there is a fraction of equation (61) which intersects with d2(Y min)−P (Y min)
that is depicted in light grey. This is because it evolves d < 0. As the level of P becomes smaller, cT

does so and it is not necessary to take debt to satisfy optimality. In other words, the light grey areas
represent the unconstrained regime for yT = ylb. A similar argument holds for yT = Y max ≡ yub.
As it is shown in the appendix for section 4 (see Lemma 20), in the unconstrained regime, tradable
consumption is increasing in tradable output, while debt is decreasing in the same variable. Thus, it
is possible that d(d, Y max) < p(Y max − d + d(d, Y max)/R, yN ), where p(., .) is equation (49) and
d(., .) is the policy function for the unconstrained regime associated with the envelope m+. The locus
formed by equation (61) which intersects with d2(Y max)−P (Y max) is depicted in light grey as the pair
(d+(Y max−Y min)(1+κ/R), PY max), where f(PYmax) = K(d+(Y max−Y min)(1+κ/R)) may belong
to the unconstrained regime given the fact that Y max can be chosen to be arbitrarily large. Further,
note that there is a point for which d(d, Y T ) = p(yT − d + d(d, yT )/R, yN ), with Y min < yT ≤ Y max
(see Lemma 18 in the appendix). Thus, as p(., .) is continuous and d(., .) are continuous and decreasing
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in yT , and cT = Y T − d+ d(d, Y T )/R is increasing in Y T , we know that the collateral constraint will be
binding for any y < Y T . Thus, the desired result follows.

Supplemantary material for section 5.2.2

In this subsection we show that an ergodic GME, summarized by equations (52) to (56), is capable of
generating 2 different types of sudden stops. At the same time, each of these events can be divided in
3 phases. i) The pre-sudden stop, characterized by an increase in the current account deficit. ii)The
sudden stop itself, which consists of a sharp drop in consumption and a current account reversal. iii) The
post-sudden stop. The events are mainly differentiated by phase iii). In the first type, exemplified by
Portugal in 2008, there is a moderate recovery in consumption. In the second type, represented by Spain
in 2008, consumption keeps falling after the sudden stop. Figures 5 and 6, borrowed from Pierri, et. al.
([63]) illustrate this situation.

Figure 5: Anatomy of a Sudden Stop: Portugal 2008
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The figure is constructed using the data set in Pierri, et. al. (2018). The authors refine the definition of a sudden stop to
incorporate the 3 phases mentioned in section 5.2. The dotted line represents the current account divided by GDP, both at
current prices. The left index is measured in porcentaje points. The right index, in full line, contains a consumption index
constructed using the de-trended (by Hodrick and Prescott, HP) series at constant prices. The base of the index is 100 at
“T-2”, where “T” is the date of the sudden stop (2008).

Moreover, the GME is capable of simulating a “Fisherian deflation” (i.e. a path of real exchange rate de-
preciation coupled with falling consumption) and a sudden stop without relying on a large, unanticipated
shock that impose the loss of access to capital markets by assumption. This shock is typically represented
by a sudden change in a (non-stochastic) parameter or a change in the support of the distribution of
exogenous shocks. Neither of these assumptions are required once we change the type of SCE we study
from RE to more general GME representations. To our knowledge, this is the first attempt to show that
a general equilibrium model with occasionally binding price dependent collateral constraints is capable
of generating a collapse in borrowing followed by a “financial accelerator effect”, caused by de-leveraging,
and at the same time preserve the ergodicity of the dynamical system which, as will be shown in section
5.3, is essential for simulating and calibrating the model.
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Figure 6: Anatomy of a Sudden Stop: Spain 2008
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To model a sudden stop we must show the existence of an abrupt reversal in foreign borrowing. By
“abrupt” we mean that it must be an intra-period event. This is the same effect caused by a sharp
reduction in κ but without imposing an exogenous event (i.e. an event that can not be explained within
the theoretical framework embodied in the model). In order to show the existence of such an event the
multiplicity of equilibria will be essential.
Let “T” in figures 5 and 6 be the time of the sudden stop. Before that, in phase i), we are in the
unconstrained regime. In the case of Portugal, we observe a small decrease in consumption (3%) and
an increase in the current account deficit. By setting yTT−2 = yTT−1 = ylb, as the unconstrained regime
can be thought as a standard partial equilibrium concave savings problem, we can match the observed
path 56. In the case of Spain, we observe both an increase in consumption and a reduction in the current
account deficit. The same arguments can be used to show that this path can also be generated in the
unconstrained regime for a sequence of shocks which satisfies yTT−2 > yTT−1 > ylb

57. Then, suppose that
for some debt level d and yT = ylb, the collateral constraint is binding. This happens in period T without
loss of generality 58. Then, equation (56) implies:

U ′{A1(ylb +R−1κ{ylb + pyN} − d)} ≥ E(U ′{A1(yT+ − κ{ylb + pyN}+R−1d)}) (76)

Where d defines the ergodic selection ϕ ∼ Φ in theorem 1 and the right hand side of equation (76) follows
from the existence of an envelope shown in section 3.

One of the most relevant aspects of a GME is that it is computed “backwards”. That is, we are interested
in finding d, instead of d+ as in the RE It turns out that this fact can be used, combined with the primal
version of the Euler equation (76), to obtain a sudden stop without requiring a jump in the exogenous
parameters of the model. Let c, d+ be the consumption and debt level tomorrow in (76). Note that, as we
are in the constrained regime and P is increasing in tradable consumption, any c∗ < c will also satisfy (76).
Take a pair (d∗, P∗) with ylb + pyN > ylb + p∗y

N , where P (cT ) ≡ p > P (cT∗ ) ≡ p∗ with p and p∗ defined

56The proof follows immediately from Lemma 17 and 20 in the appendix of section 4
57See Lemma 20 in the appendix for section 4.
58Lemma 18 in the appendix containing the proofs of section 4 implies that starting from any initial condition, the

collateral constraint binds in finite time with positive probability.
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by the intra-temporal optimality condition in the system defined by equations (52) to (56). Now, the
discussion in the preceding section implies that there are 2 possible branches for the equilibrium selection.
Taking the lower one, we know that p is decreasing in d as the branch has negative slope (see figure 4),
which in turn implies d < d∗. Thus, c = ylb +R−1κ{ylb + pyN} − d > ylb +R−1κ{ylb + p∗y

N} − d∗ = c∗
as desired. As equation (76) holds with inequality, this implies that the level of debt tomorrow is binding
at p∗, that is d+,∗ = κ{ylb + p∗y

N}.
The discussion above suggests that it is possible to set the level of next period borrowing such that it
is binding for the new level of consumption c∗ as equation (76) is allowed to hold with strict inequality.
Remarkably note that there exist a κ′ < κ such that κ′{ylb + pyN} = d′+ = κ{ylb + p∗y

N} which implies
that κ{ylb + p∗y

N} is a sudden stop level of debt if the pair (d∗, p∗) implies a sharp contraction in
consumption and a reversal in the current account. The first fact was already shown. Note that the
order of magnitude of this “recession” depends on the level of consumption reached in phase i) before the
sudden stop which, given the unconstrained nature of this phase and the smoothness of consumption in
that regime, is similar to c and bigger than c∗. Thus, memory in the form of a sequence yTT−n, ..., y

T
T−1,

matters in order to capture the quantitative properties of the sudden stop and the GME is capable of
capturing it. Technically, the compactness of the SCE insures that we can adjust the severity of the
crises along with a finite lower bound on consumption, both proved in lemma 3
It remains to show that the jump from (d, p) to (d∗, p∗) generates a current account reversal. Let d+, d∗,+
be the level of next period debt associated with c, c∗ respectively. In order to generate the mentioned
reversal, we must have d∗,+−d∗ < d+−d. As d∗,+ = ylb+p∗y

N < d+ = ylb+pyN and d < d∗, the desired
result follows. In order to connect d∗,+ − d∗ with the current account level before the sudden stop, note
that, by the arguments used to show phase i), a sequence of negative shocks to income, yt−n = ylb with
n = 2, 3...N , will generate an increasing sequence of debt. Thus, dt−n > d∗,+ without loss of generality.
To sum up, the sudden stop generates a reduction in consumption and a current account reversal as
desired. Finally, as this event happens for a particular trajectory of exogenous shocks y0, y1, ..., yT in
finite time, the event has positive probability but can be considered a “rare event” as noted by Mendoza
and Smith (([50])).
It is sometimes observed that after a sharp depreciation, it follows a recovery in consumption coupled
with a real appreciation and a current account improvement. This is the case of Portugal 2008 in phase
iii). A GME is capable of replicating these facts as a path in the unconstrained regime. In particular,
the model associates an increase in the national income with this type of phase iii). That is, we must
observe an increase in yTT+1 − d+. This shock implies an increase in consumption which generates the
real appreciation due to the intra-temporal optimality condition p(cT ).59 Moreover, the concavity of the
utility function implies d++ < d+, as it is possible to smooth consumption in an unconstrained economy.
Thus, the observed current account improvement follows.

In order to show the existence of Fisherian deflation, we must prove that there exist a binding level of debt
d++ which simultaneously satisfies equations (52) and (76) with 0 < d++ < κ{ylb+p∗yN} = d∗,+, c+ < c∗
and p+ < p∗. That is, d++ = κ{yT+ + p+y

N} must satisfy:

p =
A2(yN )

A1(yT+ +R−1κ{y+ + p+yN} − κ{ylb + p∗yN})
(77)

By setting yT+ > ylb, it is possible to choose κ{yT+ + p+y
N} < κ{ylb + p∗y

N} and c+ will remain positive.
Note that the last 2 inequalities together imply p+ < p∗. Moreover, p is increasing and real valued in c,
which imply that we must have c+ < c∗. Finally, to show optimality, d++ must satisfy:

U ′{A1(yT+ +R−1κ{y+ + p+y
N} − κ{ylb + p∗y

N})} ≥
≥ E(U ′{A1(yT++ − κ{y+ + p+y

N}+R−1d)})
59See Lemmas 20 and 21 in the appendix for section 4.
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As c+ < c∗, we know U ′{A1(c+)} > U ′{A1(c∗)}. As y+ + p+y
N < ylb + p∗y

N , it follows that
E(U ′{A1(yT++ − κ{y+ + p+y

N} + R−1d)}) < E(U ′{A1(yT++ − κ{ylb + p∗y
N} + R−1d)}), which implies

that the condition above is satisfied. As mentioned before, the path of Spain in the 2008 sudden stop was
characterized by a monotonically decreasing consumption sequence; even after the sharp drop in period
”T”. At the same time, we observed an improvement in the current account. The ”Fisherian deflation”
described above matches these facts as d++ < d+, which implies the observed improvement in the current
account, and c+ < c∗, which gives us the decreasing consumption sequence.

Supplementary Material for section 5.3 (numerical procedure)

We now present the ergodic, stationary and non-stationary algorithm together with some details pf the
procedure involved.

GME Ergodic Algorithm

Step 1: Computation

� Fix the vector of parameters from section 2.1, [κ, β, σ, ξ, a] ≡ Θ� −→0 with U(c1, c2) = A(c1,c2)
(1−σ)

1−σ

and A(c1, c2) = (a(c1)(1−1/ξ) + (1− a)(c2)(1−1/ξ))
1

1−1/ξ .

� Fix Y ×K1 ×K2

� Compute d(d, y) from (21) ignoring the collateral constraint.

� Compute d∗ from equation (72) in the appendix

� Compute ϕ ∈ Φ from equation (73) in the appendix

Step 2.1: Stationary simulation

� Take a ”draw” of length T + 1 from (Y, q), the exogenous Markov process which generates tradable
output.

� Fix [dT−1, yT−1] from Y × K2, obtain dT from d(d, y). Verify if the collateral constraint binds
and adjust dT if necessary. Then compute dT+1(yT , dT−1, yT−1) from ϕ ∈ Φ for every yT ∈ Y .
Compute the rest of the endogenous variables from equations (52)-(56).

� Take [pT (yT ), dT (yT−1)] as given from the previous • and compute [pT−1(yT−1), dT−1(yT−2)] from
equations (52)-(56). Note that dT−1 is in the preimage of d′(d, y) with dT = d(dT−1, yT−1).

� Repeat the above • until you get [p0(y0), d0], where d0 is allowed to be independent of y0 as they
are both initial conditions of the system.

Step 2.2: Ergodic simulation

� Take a ”draw” of length N + 1 from (Y, q), the exogenous markov process which generates tradable
output.

� Compute [pj(yj), dj(yj−1)] for j = N + 1, N,N − 1 as in the stationary simulation procedure

– If dN binds, yN−1−dN−1+dN/R > yLB−d∗+d(d∗, yLB)/R and dN > d(d∗, yLB), the process
hits the atom and reverts to it.

� Continue until [p0(y0), d0]
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The numerical procedure is based on the policy function of the RE, d′(., .). It is computed as a solution
to (21) without a collateral constraint. Then the atom d∗ is computed using d′(., .) in (72). Note that if
the process hits the constraint in period t, then d(dt, yt) > d(d∗, ylb). Thus in order to find a regeneration
point, we need:

U ′ {c1 (yt − dt + d(dt, yt)/R)} − βR
∑
y′

U ′ {c1 (y′ − d′(dt, yt) + d′′(dt, yt, d
′, y′))} ≡ f(d′′(y′); d, d′, yt) ≥ 0

U ′ {c1 (ylb − d∗ + d′(d∗, ylb)/R)} − βR
∑
y′

U ′ {c1 (y′ − d′(d∗, ylb) + d′′(d∗, ylb, d
′, y′))} ≥ 0

where, for exposition purposes, we denote d+ = d′ and d++ = d′′ if the collateral constraint does not bind
or if it binds with equality. Note that in section 4 we require d′′ to be independent of d, d′, y. This fact
implies that we can easily find d′′ but there are some additional conditions which must be satisfied by
paths in order to revert to the atom (i.e. consumption and debt must be greater than the atomic level).
This restrictions affects the frequency at which the atom is hit. Thus, in order to improve the recurrent
structure of sets and gain computationally efficiency, we modified the selection from the GME. When we
allow d′′ to depend on an expanded state space, we can find a stationary Euler equation for each d, y as
d′ has at most 2 solutions when the collateral constraint is binding.
To formally prove the existence of this selection is beyond the scope of this paper. We need to show
that f(d′′(y′); d, d′, yt) ≥ 0 has a minimum in d′′ for each y′; d, d′, yt, subject to the collateral constraint,
and that the value function of this problem is equal to zero if the collateral constraint is not binding.
Numerically, this selection is easily implemented and the algorithm is really fast as we do not need to
compute every selection of the GME.

GME Non-Stationary Algorithm

Step 1

� Fix the vector of parameters from section 2.1, [κ, β, σ, ξ, a] ≡ Θ� −→0

� Fix Y ×K1 ×K2 in order to define a compact set for (y, p, d) respectively.

� Fix a [pT+2(yT+2), dT+2(yT+1)] for each (yT+1, yT+2) ∈ Y × Y . This will define a selection ϕ ∈ Φ
using the Euler equation in time T .

Step 2

� Take a ”draw” of length T + 1 from (Y, q), the exogenous markov process which generates tradable
output.

� Fix [pT+1(yT+1), dT+1(yT )] from K1×K2 and compute [pT (yT ), dT (yT−1)] from equations (52)-(56)

� Take [pT (yT ), dT (yT−1)] as given from the previous • and compute [pT−1(yT−1), dT−1(yT−2)] from
equations (52)-(56). Include [pT+1(yT+1), dT+1(yT )] in the Euler equation. This step implies a
change in the selection from Φ and, thus, breaks the stationarity of the process.

� Repeat the above • until you get [p0(y0), d0], where d0 is allowed to be independent of y0 as they
are both initial conditions of the system.
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