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Summary

In dynamic choice models, dynamic inconsistency of preferences is a situation

in which a decision-maker’s preferences change over time. Optimal plans under

such preferences are time inconsistent if a decision maker has no incentive to follow

in the future the (previously chosen) optimal plan. A typical exemplification of

dynamic inconsistency is so called “present bias”, i.e. the repetitive preference

towards smaller present rewards versus larger future rewards.

The study of dynamic choice of decision makers who possess dynamically in-

consistent preferences has long been the focal point of much work in behavioral

economics. Experimental and empirical literatures both point to the importance

of various forms of present-bias. The canonical model of dynamically inconsistent

preferences exhibiting present-bias is a model of quasi-hyperbolic discounting. A

quasi-hyperbolic discounting model is a dynamic choice model, in which the stan-

dard exponential discounting is modified by adding an impatience parameter that

additionally discounts the immediately succeeding period.

A central problem with analytical study of decision makers who possess dynam-

ically inconsistent preferences is how to model their choices in sequential decision

problems? One general answer to this question is to characterize and compute (if

they exist) constrained optimal plans, that is optimal among time consistent se-

quential plans. Time consistent plans are those among the set of feasible plans that

will be actually followed, or not re-optimized, by agents whose preferences change

over time. These are called Time Consistent Policies (TCPs).

This chapter presents many results on the existence, uniqueness, and charac-

terization of stationary, or time invariant, TCPs in a class of consumption-savings

problems with quasi-hyperbolic discounting, as well as provides some discussion of

how to compute TCPs in some extensions of the model. In this chapter, the role

of the generalized Bellman equation operator approach is central. This approach

allows to provide sufficient conditions for the existence of time consistent solutions

and facilitates their computation.
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Importantly, the generalized Bellman approach can also be related to a common

first order approach in the literature known as the generalized Euler equation ap-

proach. By constructing sufficient conditions for continuously differentiable TCPs

on the primitives of the model, sufficient conditions under which a generalized Euler

equation approach is valid can be provided.

Other important questions addressed in the chapter include sufficient condi-

tions for the existence of monotone comparative statics in interesting parameters

of the decision environment, as well as generalizations of the generalized Bellman

approach to allow for unbounded returns and general certainty equivalents. The

case of multi-dimensional state space is also discussed, as is a general self-generation

method for characterizing non-stationary TCPs.

Keywords: Time consistency; Quasi-hyperbolic discounting; Markov perfect equi-

librium; Generalized Bellman equation; Generalized Euler equation; Existence;

Uniqueness; Approximation; Monotone Comparative Statics

JEL classification: C61, C73

INTRODUCTION

The relationship between discounting and dynamic choice has been a topic of great

interest in economics since the early paper of Ramsey (1928) almost a century ago. In his

work, Ramsey proposed to model intertemporal preferences of a decision-maker as the

weighted sum of future utilities. Subsequently, Samuelson (1937) sharpened this model

of intertemporal preferences by proposing a model with exponential discounting, and

this model soon became a standard approach to specifying intertemporal preferences

in dynamic economies. Then, with the subsequent work of Koopmans (1960) on the

axiomatic approach to recursive utility (with exponential discounting as a special case),

the foundations for dynamically consistent preferences was made foundational.1

The seminal paper of Strotz (1956) challenged this orthodoxy. Strotz proposed a

model of dynamic choice for decision makers with dynamically inconsistent preferences.

Since his pioneering suggestion, there has been a large and ever growing literature

in dynamic behavioral economics which has sought to understand dynamic decisions

under such preferences. This work has appeared in such diverse fields in economics

as macroeconomics, financial economics, political economy, environmental economics,

health economics, and public finance. The need for such studies has been motivated by

a large and growing empirical and experimental literature that has shown how important

preference reversals is in the understanding of dynamic choice of decision-makers that

are forced to compare current vs. future utilities.2

1See also Halevy (2015) for a nice recent discussion of these issues.
2For work discussing the empirical motivation for the importance of present-bias and dynamic incon-
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There has been at least two strands of work on the theoretical side of this liter-

ature. One strand is found in a series of papers which axiomatize preferences that

exhibit various forms of dynamic inconsistency related to discounting. This includes

the work of Montiel Olea and Strzalecki (2014), Chambers and Echenique (2018), and

Chakraborty (2021) on quasi-hyperbolic discounting and related forms of present bias;

Galperti and Strulovici (2017) on dynastic preferences with altruism and their relation-

ship with quasi-hyperbolic discounting; Jackson and Yariv (2015) and Lizzeri and Yariv

(2017) concerning the study of dynamic collective choice and time inconsistency; temp-

tation preferences axiomatized in Gul and Pesendorfer (2001, 2004, 2005); and other

related work on self-control presented in Noor (2011) and Dekel and Lipman (2012), for

example. This line of work has also looked at the axiomatization of “naive” vs. “sophis-

ticated” decisions for dynamically inconsistent consumers (e.g., the papers of Ahn et al.

(2019), and Ahn et al. (2020)) in the context of quasi-hyperbolic preferences.

The second strand includes voluminous literature which seeks to characterize time

consistent choice in models where agents have dynamically inconsistent preferences.

Starting with the early work of Phelps and Pollak (1968), Pollak (1968) and Peleg and

Yaari (1973) where the so-called“game theoretic” interpretation of time consistent choice

was proposed, this work has sought to identify sufficient conditions for the existence of

Stationary Markov equilibria in models of quasi-hyperbolic discounting (e.g., see the

work of Laibson (1997), Harris and Laibson (2001), Krusell and Smith (2003), Krusell

et al. (2010), Nowak (2010), Harris and Laibson (2013), Chatterjee and Eyigungor

(2016), Balbus et al. (2015c, 2018), Cao and Werning (2018), Jaśkiewicz and Nowak

(2021), and Bäuerle et al. (2021), among others), as well as work that studies the long-

memory subgame perfect equilibria as in the papers of Bernheim et al. (2015) or Balbus

and Woźny (2016). More recently, these results have been extended to more general

behavioral discounting cases as in the papers of Balbus et al. (2021, 2022), Jensen

(2021), and Richter (2020).

In this literature, the question of defining what a “time consistent solution” actually

is turns out to be a very important question. Since the work of Phelps and Pollak

(1968) and Peleg and Yaari (1973), as well as much of the literature that has followed,

researchers have viewed a “time consistent solution” for an individual consumer as a

sistency in choice, see Angeletos et al. (2001), Ameriks et al. (2007), Halevy (2015), and Cohen et al.

(2020).
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subgame perfect equilibrium of a dynamic intrapersonal game between a collection of

that consumer’s “selves”. That is, it envisions the consumer as playing a dynamic game

between one’s current self and each of her future “selves” or “generations”, with the

appropriate equilibrium concept defining a time consistent solution as a subgame-perfect

Nash equilibrium (SPNE, henceforth).

It is important to note that this definition differs from the solution concept proposed

by Strotz (1956), and further studied by Pollak (1968) and Kydland and Prescott (1977),

where a decision theoretic viewpoint was taken, and the idea of optimal time consistent

policies was proposed where one views the time consistent solution as being “optimal”

relative to the set of all possible time consistent solutions.3 In some cases, the two

approaches can be linked, but there is no equivalence between the two notions. As

Caplin and Leahy (2006), Balbus et al. (2015c), and Balbus et al. (2022) discuss in

some detail, although the optimal time consistent plan is a SPNE of some game, the

converse is false as from the vantage point a decision maker relative to how future ties

are being broken (in favour of a current self vs. future selves). It also bears mentioning,

the set of SPNE may also be large, and most importantly, not necessarily possess the

element with the greatest value. Hence, an optimal SPNE (i.e., a SPNE that corresponds

to some optimal time consistent policy) may simply not exist.

This chapter studies the question of time consistent solutions from the game theo-

retic approach in dynamic models where agents have present bias. The remainder of

the chapter is layout as follows. Section 2 (The quasi-hyperbolic discounting model)

describes a prototype of the quasi-hyperbolic discounting model, and provide a detailed

discussion of its structure starting with the finite horizon case. Here, an example com-

pares naive vs. sophisticated solution, as well as describes what is commonly referred to

as a “generalized Euler equation” in the existing literature (e.g., see Harris and Laibson

(2001) and Krusell and Smith (2003)). Section 3 (Searching and characterizing station-

ary Markov perfect equilibrium) considers the infinite horizon case for a version of the

quasi-hyperbolic model following a (stochastic) game-theoretic interpretation of time

consistent plans (TCPs), and define a time consistent solution to be stationary Markov

perfect equilibrium (SMPE) in the resulting dynamic intrapersonal game. The new idea

of a “Generalized Bellman equation” for the quasi-hyperbolic consumer is introduced,

and this functional equation plays a critical role in the construction of the SMPE. We

3 See Caplin and Leahy (2006) for a nice discussion of the idea of optimal time consistent policies.
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also give sufficient conditions for the existence, characterization, and computation of

time consistent equilibrium as SMPE, and as well as discuss when it is unique. Exam-

ples of applications of the results are provided, as well as a set of monotone comparative

statics results relative to the set of time consistent plans. The question of sufficient con-

ditions for the existence of a generalized Euler equation governing the model’s SMPE

for the infinite horizon case is also addressed. In section 4 (Extensions) of the paper,

extensions of the model to more general settings are considered including unbounded

state spaces and time inconsistent recursive utilities. In this section, the idea of gen-

eralized certainty equivalents is discussed, as well as the question of how to extend the

results to models with multidimensional states. Finally, in section 5 (Self-generation

approach) of the chapter, self-generation approaches are provided that can be used to

construct more general notions of time consistent plans as subgame perfect equilibria.

THE QUASI-HYPERBOLIC DISCOUNTING MODEL

A PROTOTYPE MODEL

The canonical version of the consumption and savings problem for a consumer with

quasi-hyperbolic preferences motivates much of the discussion in this chapter. Consider

a discrete time, T -period, consumption-saving model, where the sequence of lifetime

preferences, index by date t, over sequences of consumption (ct+τ )T−tτ=0 is given by:

u(ct) + Et
T−t∑
τ=1

βδτu(ct+τ ). (1)

Here δ ∈ (0, 1) is called a long-term discount factor while β ∈ (0, 1] is an additional short-

term impatience parameter, Et denotes the mathematical expectation taken relative to

date t information, and T for the moment is finite. Preferences given by (1) are the

same for any t and, hence, are time invariant. For given t these preferences are non-

stationary whenever β < 1. Indeed, the ratio of discounted utilities in any two time

periods t+ τ + 1 and t+ τ (for τ > 0) is given by:

βδτ+1u(ct+τ+1)

βδτu(ct+τ )
,

and hence is equal to δu(ct+τ+1)
u(ct+τ ) for τ > 0 as compared to βδu(ct+1)

u(ct)
for τ = 0. These

two properties, i.e. time invariance and non-stationarity, imply time inconsistency of

sequences of preferences given by (1). Indeed, a decision maker planning choices over
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consumptions τ periods ahead would have an incentive to change his choices, when this

period actually occurs. See Halevy (2015) proposition 4 for a formal argument. For

β < 1, preferences exhibit present bias: i.e., a decision maker who planned a choice

of (ct+τ )T−tτ=0 at time t will have an incentive to increase his consumption at the cost of

reducing investment when period t′ = t+τ actually occurs (as βδ < δ). In what follows,

the consumer thinks of herself as a sequence of successive “selves”, each self associated

with particular time period t.

In any date t, self t enters the period with a stock st ∈ S (where S = [0, s̄]) that is

divided between the current consumption ct ∈ [0, st]) and current savings/investment

denoted by it := st− ct, where savings/investment is placed into a (possibly stochastic)

return technology. The “stock” st is interpreted as an productive asset or a capital.

The current investment parameterizes transition probability over tomorrow’s stock S

and is given by the first order Markov process Q(·|it). This specification is very general

and allows to cover many special cases. For example, it allows for st+1 = F (ωt+1, it)

where ωt+1 ∈ Ω is a random shock with distribution πt+1 on Ω and F a (production

or transformation) function. Here F can be multiplicative with F (ωt+1, it) = ωt+1g(it)

(in which case ωt+1 can be interpreted as a random productivity shock) or additive

F (ωt+1, it) = g(it)+ωt+1, (where ωt+1 can be interpreted as a random labour income) for

some continuous and increasing g. One can rewrite this transition process as: Q(A|it) =∫
Ω 1A(F (ω, it))πt+1(dω), where 1A() is a indicator function of a Borel set A ⊆ S. Finally,

this specification also allows for a deterministic state transitions. Indeed, consider a

typical transition between current and next period capital: kt+1 = F (kt)− ct for some

increasing and continuous production function F : R+ → R+ and full depreciation.

Introducing st := F (kt) as a state variable and it := F (kt)−ct one obtains the transition

given by Q(A|i) = 1A(F (i)).

THREE PERIOD EXAMPLE

It is useful to first consider a simple example of the model with T = 3 to understand the

complications that quasi-hyperbolic discounting creates. The preferences of the date 1

self 1 are defined then over (c1, c2, c3), and given by

u(c1) + βδ(u(c2) + δu(c3)),
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while the preferences of date 2 self are defined over (c2, c3) and given by:

u(c2) + βδu(c3)

with u(c3) being the preferences for the date 3 self. In what follows, assume the utility

function u : R+ → R+ is strictly increasing, strictly concave and twice continuously dif-

ferentiable. Additionally impose the Inada condition on u′ so that consumption choices

are interior. To keep things illustrative, consider the special case of deterministic lin-

ear technology F (k), and associate state st with returned capital (1 + r)kt. That is

st := F (kt) = (1 + r)kt for some given interest r > 0.

Since the model encompasses multiple selves, its solution depends on the beliefs

that the current self formulates about all of his future selves in any given period. The

literature consider two standard cases of such a belief. The first is the “naive” solution,

in which the current self (mistakenly) believes that her future selves will continue the

proposed plan. The second belief is the “sophisticated” solution, in which each current

self correctly forecasts changes to the proposed plan by any future self.

For T = 3, the naive solution is first characterized, followed by the sophisticated

solution and a discussion on how they can differ. Consider a simple model in which

self 1 is endowed with a state (income or production) s1 and divides it between c1

and investment i1. Such investment increased by the interest rate is returned to self

2. Consumption is nonnegative but otherwise assets can be freely moved between the

periods.4

The naive solution to quasi-hyperbolic model To solve for the naive solution, start

with date t = 1 self. The agent solves for (c1, c2, c3) first:

max
(ci≥0)3i=1

u(c1) + βδu(c2) + βδ2u(c3)

s.t.c1 +
c2

1 + r
+

c3

(1 + r)2
≤ s1,

Observe that only c1 is actually realized from the optimal plan (c1, c2, c3). That is,

because preferences are dynamically inconsistent, the continuation plan (c2, c3) is then

4 Although not covered in this survey, credit/borrowing constraint are important to understand

dynamics of solutions to models without commitment. This is especially important for models with

commitment assets. See e.g. Laibson (1997) and Woźny (2016).
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updated by date t = 2 self by solving

max
(ci≥0)3i=2

u(c2) + βδu(c3)

s.t.c2 +
c3

(1 + r)
≤ (1 + r)(s1 − c1) := s2.

Finally, since period t = 3 self makes no choice (i.e. c3 = s3) the actual path is then c1

chosen by date 1 self and (c2, c3) chosen by self 2.

The sophisticated solution to quasi-hyperbolic model Strotz (1956) proposed a so-

phisticated solution to the model with changing preferences (i.e. a solution that will

“actually be followed”) To find such a solution, solve the problem by backward induction

starting from date t = 2:

max
c2≥0,c3≥0

u(c2) + βδu(c3)

s.t.c2 +
c3

(1 + r)
≤ (1 + r)k2 := (1 + r)(s1 − c1).

Here, assume self 2 is endowed with (1 + r)k2 = s2. The problem is strictly concave and

hence the solution unique. The first order condition of the optimal interior allocation is

as follows:
u′(c2)

βδu′(c3)
= 1 + r.

or
u′(c2)

βδu′((1 + r)(k2(1 + r)− c2)
= 1 + r.

where everything here is standard.

Denote the optimal choice c∗2(k2) and c∗3(k2). These are now called the reaction

curves of the second period self as they depend on the assets / capital obtained from

the first period self. To simplify, denote by k∗3 := k2(1 + r)− c∗2(k2). Clearly: c∗2(k2) =

k2(1 + r)− k∗3(k2) and c∗3(k2) = (1 + r)k∗3(k2). Using the implicit function theorem, the

interior optimal reactions c∗2, c∗3 and k∗3 are continuously differentiable functions in the

asset/capital.

Now move to consider period 1 self problem:

max
c1≥0,k2≥0

u(c1) + βδu(c∗2(k2)) + βδ2u(c∗3(k2))

s.t.c1 + k2 ≤ s1.
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That it, the first period self correctly forecasts self 2 (and 3) reaction to the left as-

set/capital k2. The problem is continuous hence the solution exists. Substituting, one

obtains:

max
k2≤s1

u(s1 − k2) + βδu(k2(1 + r)− k∗3(k2)) + βδ2u((1 + r)k∗3(k2)).

As the reaction function k∗3 is differentiable, one obtains the first order condition for

optimal interior k2:

−u′(c∗1) + βδu′(c∗2(k2))[1 + r − ∂k∗3(k2)

∂k2
] + βδ2(1 + r)u′(c∗3(k2))

∂k∗3(k2)

∂k2
= 0. (2)

Recall, for self 2, u′(c∗2(k2)) = βδ(1 + r)u′(c∗3(k2)) for any k2. Using this

−u′(c∗1) + βδu′(c∗2(k2))[1 + r − ∂k∗3(k2)

∂k2
] + δu′(c∗2(k2))

∂k∗3(k2)

∂k2
= 0,

and hence:
u′(c∗1)

βδu′(c∗2(k2))
= [1 + r − ∂k∗3(k2)

∂k2
] +

1

β

∂k∗3(k2)

∂k2

or:
u′(c∗1)

βδu′(c∗2(k2))
= 1 + r + [

1

β
− 1]

∂k∗3(k2)

∂k2
.

Krusell et al. (2002) called this equation a “generalized Euler equation”. Indeed, it has

the standard interpretation of the marginal rate of substitution being equal to the ratio

of prices, but with the critical addition of the corrective factor [ 1
β−1]

∂k∗3(k2)
∂k2

that involves

the policy function itself. Notice, this term disappears when β = 1 (the dynamically

consistent preference case). Recall, the term
∂k∗3(k2)
∂k2

can be computed using the implicit

function theorem:

∂k∗3
∂k2

(k2) =
(1 + r)βδu′′(c∗2(k2))

u′′(c∗2(k2)) + (1 + r)βδu′′(c∗3(k2))
.

If β 6= 1, then the generalized Euler equation implies, among other things, that

in order to characterize the optimal investment k2, the first period self must use the

(investment) reaction curve of the second period self in defining her optimal solution.

This is a critical feature of this model, and is the case as from the perspective of the first

period self some part of its investment will be misused for the excessive consumption

in period 2. The fact that this corrective factor disappears for β = 1 results exactly

from the principle of optimality. Indeed, whenever the preferences are consistent, by

the principle of optimality (and envelope theorem), the reaction curve of the future self

is still optimal from the perspective of the current self.
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NOTATION AND MORE THAN THREE PERIODS

For future reference observe that the problem of the first period self can be simplified

by the introduction of the continuation value. This is, the value from consuming second

period self choices c∗2 and c∗3 but evaluated from the perspective of the first period self:

V2(k2) := u(c∗2(k2)) + δu(c∗3(k2)) = u((1 + r)k2 − k∗3(k2)) + δu((1 + r)k∗3(k2))

Then, the problem of the first period self can be simplified to:

W (k1) := max
k2≤(1+r)k1

u((1 + r)k1 − k2) + βδV2(k2),

where the value to the fist period self problem is denoted by W (k1). V2 is differentiable

as c∗2 and c∗3 are and hence the first order condition for the optimal choice of k∗2 is simply

given by:

u′((1 + r)k1 − k∗2) = βδV ′2(k∗2).

By the “envelope”:

V ′2(k2) = (1 + r)u′(c∗2(k2))− ∂k∗3
∂k2

(k2)[u′(c∗2(k2))− (1 + r)δu′(c∗3(k2))],

one obtains the same first order condition as in (2).

It turns out, unfortunately, that this solution approach suggested above of composing

the reaction curves and constructing a first order characterization of consistent plans

for the sophisticated consumer who lives for T = 3 periods cannot be easily extended

to more periods. To see this is the case, consider her problem for the T = 4 model.

Repeating the above reasoning, c∗3, c
∗
4 and k∗4 are unique and continuously differentiable.

The objective of the second period self is continuous and differentiable. It may happen,

however, that now the argmax for the second period self k∗2 is not unique (e.g., when

strict concavity of the objective fails). Moreover, any selection from the argmax certainly

need not be continuously differentiable, and might actually be discontinuous. Hence, the

problem of the period 1 self may not be well-defined (i.e., might not possess an optimal

solution for some initial capital levels). Notice also, the generalized Euler equation

representation of sequential solutions no longer holds.

Finally, let us also mention a special case for which the above mentioned problems

are not relevant and the generalized Euler equation approach is useful, and naive and

sophisticated solutions coincide. This example is unfortunately a “knife-edge” but does

admit a closed-form solutions for time consistent plans.
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Example 1 (The naive and sophisticated solutions coincide for the log utility) Take u(c) =

ln(c). The naive solution to the problem:

max
{ci≥0}3i=1

ln(c1) + βδ ln(c2) + βδ2 ln(c3)

s.t.c1 +
c2

1 + r
+

c3

(1 + r)2
≤ s1,

gives:

c1 =
s1

1 + βδ + βδ2
k2 =

(βδ + βδ2)s1

1 + βδ + βδ2
.

Sophisticated solutions produces reactions:

c∗2 =
(1 + r)k2

1 + βδ
c∗3 =

βδ(1 + r)2k2

1 + βδ

and the 1st period self preferences:

ln(c1) + βδ ln(c∗2(k2)) + βδ2 ln(c∗3(k2)) = ln(c1) + βδ ln(k2) + βδ2 ln(k2) + constant.

This constant term does not depend on k2. This gives the same choice:

c∗1 =
s1

1 + βδ + βδ2
k∗2 =

(βδ + βδ2)s1

1 + βδ + βδ2

As the first period choice of capital k∗2 is the same, hence the choice of c2 and c3 also

coincide for the naive and sophisticated case.

The log utility case is a special one as the reactions are linear. The properties of

the log utility case allow one to extend the generalized Euler equation approach to more

periods, actually including T =∞.

We show how this general class of problems for the stochastic state transition can

be addressed using the so called generalized Bellman equation approach.

INFINITE HORIZON AND STATIONARY MARKOV PERFECT EQUI-

LIBRIA

Consider now the infinite time horizon (T = ∞) and a general model with preferences

as given in (1). Again, assume the state space S is a bounded interval with S = [0, s̄].

The initial states is s1. Suppose that the current period t is fixed and the consumer

owns s ∈ S amount of capital or stock. The consumer selects c ∈ [0, s] as a consumption

and leaves i = s − c as an investment. The budget constraint is hence c + i = s. The
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next period states s′ is controlled by the current investment and (generally) the current

capital stock s via the transition distribution: s′ ∼ Q(·|i, s).

Generally, a feasibly consumption policy in period t can be any measurable function

of time as well as history of states up to the current period, i.e. (sτ )tτ=1. A consumption

policy is Markov if it depends on time t and the current state only (i.e. st). In addition,

it is Markov stationary if it is time invariant and depends on st only. It is formalized in

the next definition.

Definition 1 (Stationary Markov policy) The stationary Markov policy (SMP) is a Borel

measurable function h : S 7→ S such that h(s) ∈ [0, s] for any s ∈ S.

The set of all SMP is defined as follows:

H := {h : S 7→ S : h is Borel measurable, and h(s) ∈ [0, s] for all s ∈ S} . (3)

Assume, consumer in period t predicts the future consumption is consistent with

a SMP h ∈ H. That is, h(sτ ) is consumed in the period t + τ whenever the capital

in this period is sτ . The evolution of the capital stocks from t + 1 onward is hence a

Markov chain (sτ )∞τ=1 whose transition probability from sτ to sτ+1 takes a general form

Q(·|sτ − h(sτ ), sτ ).

To evaluate the utility from an aggregated consumption of future selves one uses the

continuation value function.

Definition 2 (Continuation Value) The continuation value function (CV) of future selves

following the stationary policy h ∈ H is defined as follows

Vh(s′) := E

( ∞∑
τ=1

u(h(sτ ))δτ−1|s1 = s′

)
.

The expected utility of the consumer today is hence:

P (c, s;h) = E

(
u(c) + βδ

( ∞∑
τ=1

u(h(sτ ))δτ−1

))
.

By definition of Vh and the property of the conditional expectation operator, letting

s1 = s one obtains:

P (c, s;h) = u(c) + βδE

( ∞∑
τ=1

u(h(sτ ))δτ−1 |s1

)

= u(c) + βδ

∫
S
Vh(s′)Q(ds′|s− c, s).
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Next, introduce the correspondence returning the best policies for the current self

against the stationary policy of future selves.

Definition 3 (Best Response Correspondence) For any h ∈ H, define the Best Response

correspondence (BR) as follows

BR(h) := {h′ ∈ H : h′(s) ∈ arg max
i∈[0,s]

P (c, s;h) for any s ∈ S}.

Define a Stationary Markov Perfect Equilibrium as follows.

Definition 4 (Stationary Markov Perfect Equilibrium) A policy h∗ ∈ H is a Stationary

Markov Perfect Equilibrium (SMPE) if for any s ∈ S,

P (h∗(s), s;h∗) ≥ P (c, s;h∗).

In other words, SMPE is the consumption plan h∗ for every self that is optimal

provided all the future selves stick to the same plan, namely h∗. Mathematically h∗ is

SMPE if and only if it is a fixed point of the best response correspondence BR defined

onH. Plan h∗ ∈ H which is a SMPE remains an equilibrium if players (selfs) are allowed

to use more general history dependent strategies. Terms Time Consistent Policy (TCP)

and SMPE are used interchangeably.

GENERALIZED BELLMAN EQUATION

In the case of β = 1, the model reduces to a standard exponential discounting, and dy-

namic programming techniques can be applied to the consumers dynamic choice problem

as the principle of optimality holds. When β ∈ (0, 1), the consumer preferences exhibit

present-bias, and her preferences are dynamically inconsistent as in the motivating ex-

ample, and a new approach to computing TCP solutions has to be proposed. In this

section, for the quasi-hyperbolic consumer, a “generalized” Bellman equation can be

defined that provides a recursive formulation of non-recursive dynamic optimization

problem. This approach helps to provide a characterization of how the quasi-hyperbolic

discounter differs from a standard exponential discounter.

To develop a generalized Bellman equation for this problem, notice first the contin-

uation value function in any SMP h ∈ H must solve the following functional equation:

Vh(s) = u(h(s)) + δ

∫
S
Vh(s′)Q(ds′|s− h(s), s). (4)

13



Moreover, the same h must solve the current self optimization problem:

Wh(s) := max
c∈[0,s]

u(c) + βδ

∫
S
Vh(s′)Q(ds′|s− c, s). (5)

Then, the following is immediately implied:

Vh(s) =
1

β
Wh(s)− 1− β

β
u(h(s)). (6)

Equation (6) is called the generalized Bellman equation.

Whenever h is a SMPE and Vh a corresponding continuation value, (h, Vh) solves

the generalized Bellman equation. Similarly, whenever a pair (h, Vh) solves the gen-

eralized Bellman equation, with h being some measurable argmax selection from the

maximization problem5 then h is SMPE and Vh its corresponding continuation value.

Equation (6) is also a generalized Bellman equation as the element 1−β
β u(h(s)) is the

adjustment factor that must be made to the standard Bellman operator to account for

changing preferences. Clearly, for β = 1, equation (6) reduces to the standard Bellman

equation.

Based on equation (6), one defines an operator whose fixed points, say v∗, correspond

to values for some pure strategy Markovian equilibrium policy. From there, one can

recover the set of (pure strategy) Markovian equilibrium policy functions. Indeed, by V

denote the set of feasible continuation value functions. Then for any v ∈ V define:

A(v)(s) = max
c∈[0,s]

{
u(c) + βδ

∫
S
v(s′)Q(ds′|s− c, s)

}
,

and

B(v)(s) = arg max
c∈[0,s]

{
u(c) + βδ

∫
S
v(s′)Q(ds′|s− c, s)

}
.

If B(v) is single valued, then implementing (6) one constructs the generalized Bellman

operator as follows:

T (v)(s) =
1

β
A(v)(s)− 1− β

β
u(B(v)(s)).

Observe that if v∗ ∈ V is a fixed point of T , then it is a continuation value function

supported by a SMPE; that is v∗ = Vh∗ where h∗ is a SMPE. Moreover, having v∗

one computes h∗(s) = B(v∗)(s). If B(v) is not single valued the generalized Bellman

equation can still be used to construct v∗ by taking some selection from the argmax

correspondence.

5That is: Wh(s) = u(h(s)) + βδ
∫
S
Vh(s′)Q(ds′|s− h(s), s) for any s. .
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SEARCHING AND CHARACTERIZING STATIONARY MARKOV PERFECT EQUI-

LIBRIUM

The problem of existence of Markov Perfect Equilibrium is generally an open question.

Even if one asserts its existence, not much is known about the characteristics or structure

of the equilibrium set. An issue of especial importance is also uniqueness of Markov

Perfect equilibrium. For that reason, an effective algorithm for computing of equilibria

is hard to construct. For example, the successive iterations of the best response map

need not be convergent, since the best response map is mostly neither monotone nor is

a contraction mapping.

Assumptions that guarantee existence of equilibrium are first provided; then, under

more restrictive assumptions, uniqueness of equilibrium is resolved (as well as conver-

gence of successive iterations). One can search the equilibria in two alternative ways:

� searching through policies: find h∗ ∈ H, that is the best against itself. In other

words, find h∗ that is a fixed point of the best response map, i.e. h∗ ∈ BR(h∗).

� searching through continuation value functions: find v∗ ∈ V that is a fixed point

of generalized Bellman operator and find the policy h∗ whose continuation value

function is v∗. In other words, v∗ = T (v∗), and one reconstructs SMPE by the

formula h∗ = B(v∗).

Both approaches are equivalent but sometimes one is more useful than another

depending on the application at hand. In the remaining subsections, we use searching

through policies to verify existence of equilibrium, while searching through continuation

value functions to show its uniqueness.

EXISTENCE OF SMPE. SEARCHING THROUGH POLICIES

This subsection is focused on the problem of existence of SMPE which is a fixed point

of the correspondence BR. Before stating the main theorem, let us provide an example

that constructs an analytical solution for logarithmic preferences.

Example 2 Let S = (0,∞), u(c) = ln(c) and suppose

Q(S0|i) = π({ω ∈ Ω : ωiα ∈ S0}),
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c, i ∈ [0, s] and i+ c = s, s > 0. Here α ∈ (0, 1) is a fixed value, and π is a log-normal

distribution LN (0, σ2). SMPE can be showed to exists in the linear form: hk(s) = ks

with k > 0. Then the capital stock (st)
∞
t=1 obeys the formula:

st+1 = ωt(1− k)αsαt with s1 = s,

or after substitution yt := ln(st), εt := ln(ωt)

yt+1 = α ln(1− k) + αyt + εt. with y1 = ln(s). (7)

Clearly εt is an i.i.d. process with N (0, σ2) distribution. The continuation value function

is

vk(s) = E

( ∞∑
t=1

ln(st)δ
t−1

)
= E

( ∞∑
t=1

ytδ
t−1

)
.

One computes vkthe following way:

vk(s) = Ak ln(s) +Bk (8)

for some Ak, Bk > 0. These constants can be found by the following program:

� find vk as a solution of Bellman equation:

vk(s) = ln(ks) + δ

∫
S
vk(s′)Q(ds′|(1− k)s); (9)

� verify whether vk obeys the transversality condition:

lim sup
t→∞

vk(st)δ
t−1 ≤ 0

for almost all realizations of st starting from s, and if

lim sup
t→∞

vk(st)δ
t−1 < 0

then vt(s) = −∞ (see Wiszniewska-Matyszkiel (2011); Wiszniewska-Matyszkiel

and Singh (2020) or Kamihigashi (2008) for details).

Substituting vk from (8) into (9) one obtains

Ak ln(s) +Bk = (1 + αδAk) ln(s) + ln(k) + δαAk ln(1− k) + δBk.

Hence

Ak = 1
1−αδ , and Bk =

ln(k)+
δα ln(1−k)

1−αδ
1−δ .

16



As a result,

vk(s) =
1

1− αδ
ln(s) +

ln(k) + δα ln(1−k)
1−αδ

1− δ
.

Now one needs to verify the transversality conditions. For all t one obtains:

vk(st) =
1

1− αδ
ln(st) +

ln(k) + δα ln(1−k)
1−αδ

1− δ
=

1

1− αδ
yt +Bk, (10)

hence

δt−1vk(st) =
δt−1yt
1− αδ

+Bkδ
t−1. (11)

The expression in (11) tends to 0 provided the series
∞∑
t=1

ytδ
t−1 are convergent. Let

zt := ytδ
t−1. By (7) the following is true:

zt+1 = α ln(1− k)δt + αδzt + δtεt.

Hence the expectation E(zt) satisfies the following difference equations

E(zt+1) = α ln(1− k)δt + αδE(zt).

Hence E(zt) satisfies

E(zt) =
α ln(1− k)

δ(1− α)
δt + αtδt ln(s),

Moreover, V ar(zt) satisfies

V ar(zt+1) = α2δ2V ar(zt) + δ2tσ2

hence

V ar(zt) = σ2(αδ)2t +
σ2

δ2(1− α2)
.

As a result, both series
∞∑
t=1

E(zt) and
∞∑
t=1

V ar(zt) are convergent. Kolmogorov two-

sequence Theorem suffices to conclude the series
∞∑
t=1

zt converges almost surely, con-

sequently zt tends to 0 almost surely. Hence, by definition of zt, the transversality

condition holds, and so vk is (10) defines the continuation value function. Then, the

current self maximizes

u(c) + βδ

∫
S
vk(s′)Q(ds′|s− c) = ln(s) +

βδ

1− αδ
ln(s− c) + δBk

such that c ∈ [0, s]. The solution is SMPE and it is

h∗(s) =
1

1 + βδ
1−αδ

s.
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Apart from specific examples, however, the existence of equilibrium under general

assumptions (for u unbounded below or Q possessing atoms) is an open question. Con-

ditions sufficient to prove SMPE existence are now provided.

Assumption 1 Assume that

� The utility function u is strictly concave, increasing, and u(0) = 0;

� The transition function obeys the following properties:

– For i ∈ S, the transition Q(S|i, s) does not depend on particular s ∈ S, call

it Q(·|i);

– For i ∈ S \ {0}, the transition Q(·|i) is a nonatomic measure, and Q(·|{0})

is either nonatomic or Q({0}|0) = 1;

– Q(·|i) is stochastically increasing, that is for any increasing, Borel and bounded

function f : S 7→ R the function

i ∈ S 7→
∫
S
f(s′)Q(ds′|i).

is increasing.

These assumptions are rather standard. Nonatomicity of Q(·|i) is assumed to guarantee

existence of SMPE is a general class of models. Two remarks are in order.

Remark 1 A typical example of u on S is the power function u(c) = cα, for α ∈ (0, 1).

Other functions satisfying the assumptions are e.g. u(c) = ln(1+ c), u(c) = 1−e−c. For

particular choice of S, for example S = [0, 1], one may take u(c) = 2c− c2.

Remark 2 A typical example of the transition probability in economic growth theory is

st+1 = F (ωt+1, it), where ωt+1 is a independent, identically distributed shock, F is a

continuous function in i and a Borel function in ω.

Apart from verifying SMPE existence one would like to provide some characteriza-

tion of SMPE policies. Therefore, restrict attention to a class of investment policies

that are increasing and lower semicontinuous:

I := {g ∈ H : g is increasing and lower semicontinuous} . (12)

18



Then the corresponding class of consumption policies is:

G := {h ∈ H : h(s) = s− g(s) for all s ∈ S, and some g ∈ I}.

The next theorem assures SMPE existence and provides characterization of investment

policies (namely, that they are increasing and lower semicontinuous).

Theorem 1 (Existence of SMPE) Under Assumption 1 there exist a SMPE in G.

Proof: Sketch of the proof. Endow G with the weak topology with the convergence →∗.

Recall, this topology restricted to G is metrizable and the convergence →∗ is equivalent

to the following condition: hn →∗ h as n → ∞ if and only if h(sn) → h(s) as n → ∞

whenever sn → s as n→∞, and s is a continuity point of h. The set G is homeomorphic

with the set of probability measures by the following transformation:

h ∈ G 7→ ηh,

where ηh is a probability measure whose cumulative distribution function is s − h(s)

i.e., ηh([0, s)) = s − h(s) for s ≤ s̄ and ηh([0, s)) = 1 for s > s̄. Hence G is compact.

The weak topology is embedded into a topological vector space G of signed measures

with locally bounded variation (see Jaśkiewicz and Nowak (2022) for details). For any

h ∈ G define

br(h)(s) := max arg max
c∈[0,s]

P (c, s;h).

Clearly br(h) ∈ BR(h). One only needs to show there exists a fixed point of h 7→ br(h).

The operator br is well defined and maps (compact) G into itself (Lemma 3.2 in Balbus

et al. (2015a)). Moreover, br is continuous (see proof of Theorem 1 in Balbus et al.

(2015a)). Hence by the Schauder-Tychonoff fixed point theorem, br has a fixed point in

G. This fixed point is SMPE.

UNIQUENESS OF SMPE. SEARCHING THROUGH CONTINUATION

VALUES

The generalized Bellman operator T along with some additional structure on the model

can be used to show uniqueness of SMPE. Clearly, to obtain such a strong result for

β < 1 one needs new assumptions, in particular on the transition Q. In this section,
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allow the stochastic transition Q(·|i, s) to depend on s, and relax the non-atomicity

of Q, but at the cost of imposing certain “mixing” condition that will be clear in the

assumption:

Assumption 2 Assume

� u is strictly concave and increasing and u(0) = 0;

� transition probability Q has the following form

Q(·|i, s) = p(·|i, s) + (1− p(S|i, s))δ0(·),

where δ0(·) is a unit point mass (Dirac delta) concentrated in 0 and

– p(·|i, s) is a finite measure such that for any s > 0 and i ∈ [0, s], p(S|i, s) < 1,

and p({0}|0, 0) = 1;

– for every bounded and Borel measurable function f such that f(0) = 0,

i ∈ S 7→
∫
S
f(s′)Q(ds′|i, s) (13)

is increasing and concave in i and continuous in (i, s).

Examples of primitive data that satisfy Assumption 2 will be provided later in

example 3. Now, instead, some consequences of Assumption 2 on the operator T are

provided. For any s ∈ S, v ∈ V define

Π(c, s, v) = u(c) + βδ

∫
S
v(s′)Q(ds′|s− c, s).

Observe that under Assumption 2 Π(·, s;h) is strictly concave regardless on s ∈ S and

v ∈ V. Since

B(v)(s) = arg max
c∈[0,s]

Π(c, s; v),

hence B(v)(s) is a singleton. Consequently the generalized Bellman operator T is well

defined. We claim that T is an increasing operator.

Claim 1 T is an increasing operator on V.

Proof: Clearly A is increasing. We show that B is decreasing. For proving the last

assertion, apply the standard Topkis Theorem (see Theorem 6.1 in Topkis (1978)). For
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this purpose show, for any s, (c, v) ∈ [0, s] × V 7→ Π(c, s; v) has decreasing difference.

For s ∈ S, let c1 < c2 ≤ s and define

κ(·) := p(·|s− c1, s)− p(·|s− c2, s).

Clearly κ is a measure. Moreover, for any v ∈ V

∫
S
v(s′)Q(ds′|s− c2, s)−

∫
S
v(s′)Q(ds′|s− c1, s) = −

∫
S
v(s′)κ(ds′).

Hence

Π(c2, s, v)−Π(c1, s, v) = u(c2)− u(c1)− βδ
∫
S
v(s′)κ(ds′)

is decreasing in v. As a result, for any s, (c, v) ∈ [0, s] × V 7→ Π(c, s; v) has decreasing

differences. Hence by the standard Topkis (1978) Theorem, B(v) is decreasing in v.

Hence T increases with v for any β ∈ [0, 1] as A is increasing with v.

Monotonicity of T happens to be critical to assure SMPE uniqueness. Again, apart

from just proving SMPE uniqueness, we provide some characterization of equilibrium

policies. To do so, define a class of policies where both consumption and investment

policies are increasing:

L := {h ∈ H : both h(s) and s− h(s) are increasing (in s)} .

By Theorems 1 and 2 in Balbus et al. (2018) one obtains the following result:

Theorem 2 (Uniqueness and attracting of SMPE) Under Assumption 2 there exists a

unique continuation value v∗, and corresponding unique SMPE. Moreover, for any initial

v0 ∈ V the sequence of successive iterations vt+1 = T (vt) for t ≥ 0 tends uniformly to

v∗. That is

lim
t→∞
||vt − v∗||∞ = 0. (14)

Let h∗ be the SMPE. If Q(·|i, s) does not depend on s, then h∗ ∈ L.

Proof: Sketch of the proof. Obviously V is a Banach space, and it is routine to verify

that T : V 7→ V. Observe that v∗ corresponding to a MPE is a fixed point of the well
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defined operator T . By Claim 1, T is an increasing operator. On the other hand, for

any nonnegative constant k,

T (v + k)(s) = T (v)(s) + δk.

Indeed, B(v+k)(s) = B(v)(s) and A(v+k)(s) = A(v)(s)+βδk. By Blackwell Theorem

(see Stokey et al. (1989)) we conclude T is a δ-contraction mapping. As a result, the

fixed point v∗ of T is uniquely determined and satisfies (14). Moreover, this is a unique

continuation value function for a SMPE. Since h∗ = B(v∗), and B is well defined, hence

SMPE is uniquely determined.

Finally, note that whenQ(·|i, s) does not depend on s the function (c, s) 7→ Π(c, s, v∗)

has increasing differences. Hence by Topkis (1978) h∗ is increasing then (i, s) 7→

Π(s− i, s, v∗) have increasing differences. Then, h∗ ∈ L.

Example 3 provides a class of transition functions that obeys Assumption 2.

Example 3 Typical example is a linear combination between some probability measure

and a unit point mass of absorbing state. For example

Q(·|i, s) =

L∑
l=1

gl(i)λl(·|s) +

(
1−

L∑
l=1

gl(i)

)
δ0(·).

Here any of gl : S 7→ [0, 1] is increasing and concave such that gl(0) = 0 and
L∑
l=1

gl(i) ≤ 1

for all i ∈ S. This class of probability distribution was used in Rogerson (1985), Amir

(1996), Szajowski (2006), Balbus and Nowak (2008) and Balbus et al. (2013b), Balbus

et al. (2015b) among others. If one relaxes this assumption, only existence of equilibrium

is assured.

MONOTONE COMPARATIVE STATICS

With Assumption 2 in place, one can prove the monotone comparative statics result

for equilibrium policies. Begin by parameterizing the transition Q by some parameter

θ ∈ Θ. Parameter θ can specify for example economy’s productivity (e.g. the higher the

θ the less productive the economy is), but could have other economic interpretations.

Now, for s ∈ S, c ∈ [0, s], v ∈ V and θ ∈ Θ define

Π(c, s; v, θ) := u(c) + βδ

∫
S
v(s′)Q(ds′|s− c, s, θ).
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Furthermore, define the operators Aθ, Bθ and Tθ as the natural (parameterized) gener-

alizations of A,B and T :

Aθ(v)(s) = max
c∈[0,s]

Π(c, s; v, θ),

Bθ(v)(s) = arg max
c∈[0,s]

Π(c, s; v, θ),

and

Tθ(v)(s) =
1

1− β
Aθ(v)(s)− 1− β

β
u(Bθ(v)).

The following assumption specifies, how the change of parameter θ affects primitives

of the model.

Assumption 3 Let us assume:

� u does not depend on θ and obeys assumption 2;

� for any s, i ∈ S and θ ∈ Θ let Q(·|i, s, θ) = p(·|i, s, θ)+(1−p(S|i, s, θ))δ0(·), where

for each θ p(·|i, s, θ) obeys Assumption 2;

� for each v ∈ V function (i, θ) →
∫
S v(s′)p(ds′|i, s, θ) has decreasing differences

with (i, θ) and θ →
∫
S v(s′)p(ds′|i, s, θ) is decreasing on Θ.

By Assumption 3 for any θ, the model obeys Assumption 2. As a result, there exists

a unique SMPE h∗θ and its continuation value v∗θ . Moreover, for any s ∈ S,

v∗θ(s) = Tθ(v
∗)(s) and h∗θ(s) ∈ Bθ(v∗)(s).

In fact, both functions increase in θ as a result of the following claim.

Claim 2 Assume 2. Then, the function Bθ(v) decreases in θ and Tθ(v) decreases in

θ ∈ Θ and increases in v ∈ V.

Proof: The the third bullet of Assumption 3 it follows that for any v ∈ V

θ ∈ Θ 7→
∫
S
v(s′)p(ds′|i, s, θ)

is decreasing, hence Aθ(v) is decreasing in θ. Obviously it is also increasing in v. For

any s ∈ S and for have for c1 < c2 ≤ s

Π(c2, s; v, θ)−Π(c1, s; v, θ) := −
∫
S
v(s′)κθ(ds

′)
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where

κθ(·) := p(·|s− c1, s, θ)− p(·|s− c2, s, θ).

Obviously, κθ is a measure hence is increasing in v. Moreover, by the third bullet in As-

sumption 3, is increasing in θ. Hence Π has decreasing differences in (s, v) and increasing

differences in (s, θ). By the standard Topkis (1978) Theorem, Bθ(v)(s) is decreasing in

v and increasing in θ. As a result, Tθ(v) is decreasing in θ and increasing in v.

This suffices to state the SMPE monotone comparative statics theorem:

Theorem 3 (Monotone comparative statics) Let Assumption 3 be satisfied. Then, the

equilibrium policy θ → h∗θ is increasing, and the continuation value θ → v∗θ is decreasing.

Proof: For any θ ∈ Θ, let vθ : S 7→ R be a Borel function. Suppose that θ 7→ vθ(s) is

decreasing for any s ∈ S. By Claim 2, it follows that Tθ(vθ) is decreasing. Hence using

the standard induction, one can show that the n-fold decomposition Tnθ (0) decreases in

θ. Indeed, for n = 1 it is clear. Suppose it is true for n and Tnθ (0) decreases in θ. Then,

by Claim 2 and induction hypothesis,

Tn+1
θ (0) = Tθ(T

n
θ (0))

it is decreasing in θ. Consequently, Tnθ (0) is decreasing in θ for any n. By Theorem 2,

v∗θ = lim
n→∞

Tn(0) decreases in θ as well. Hence, applying Claim 2 again one concludes

h∗θ = Bθ(v
θ) is increasing.

The theorem allows to conduct monotone comparative statics exercise with respect to

parameter affecting transition Q. Similar approach can be used to obtain more specific

results on comparative statics with respect to parameter β. Higher β will correspond

to a case of lower θ, i.e. more productive Q. It is illustrated by the following example.

Consider a pair of modified operators:

Â(v)(s) = max
c∈[0,s]

{
u(c) + δ

∫
S
v(s′)Q(ds′|s− c, s)

}
,

B̂(v)(s) = arg max
c∈[0,s]

{
u(c) + δ

∫
S
v(s′)Q(ds′|s− c, s)

}
.
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Observe that:

Â(βv) ≡ A(v)

B̂(βv) ≡ B(v).

We claim that v̂∗ is a fixed point of operator T̂ if and only if v∗ = v̂∗

β is a fixed point of

T , where:

T̂ (v) = Â(v)(s)− (1− β)u(B̂(v)(s))

Now consider a parameterized fixed point problem: T̂β(v) = Âv(s)− (1−β)u(B̂(v)(s)).

Observe that for each v operator T̂β(v) is increasing in β (recall Â and B̂ do not depend

on β). Under assumption 2 T̂β is a monotone contraction. Hence the unique fixed point

is increasing in β. This is summarized in the next claim.

Claim 3 (Monotone comparative statics in impatience parameter) Under assumption 2

equilibrium consumption h∗β = B̂(v̂∗β) = B(v∗β) is decreasing and, analogously, equilib-

rium investment is increasing in β.

GENERALIZED EULER EQUATIONS

Beginning with the work of Harris and Laibson (2001), many researchers have ap-

plied the so-called “generalized Euler equation” approach to solving dynamic/stochastic

games. It is possible in our setting to provide conditions on the primitives of the model

such that the existence of a unique differentiable pure strategy Markovian equilibrium

can be guaranteed. This allows one to state the version of the generalized Euler equation

that actually characterizes such a Markovian equilibrium. Suppose that Q(·|i, s) does

not depend on s and denote it by Q(·|i). Similarly denote p(·|i)

Assumption 4 Assume 2. Moreover assume the primitives of the model are sufficiently

smooth.6 In particular let p(·|i) has a density:

p(S0|i) =

∫
S0

q(s′|i)ds′,

for any Borel set S0 ⊂ S, and its derivative is denoted by:

q′(s′|i) :=
d

di
q(s′|i);

6See Balbus et al. (2022) for details.
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Put

D(s) =
d

di

∫
S
v∗(s′)Q(ds′|i)

∣∣∣∣
i=s−h∗(s)

. (15)

Theorem 4 (Generalized Euler Equations) Assume 4. Then, any interior h∗ is differ-

entiable and the following equation is satisfied for any s > 0:

u′(h∗(s))

βδ
= D(s) =

(
1

β
− 1

)∫
S
u′(h∗(s)))(h∗)′(s′)q′(s′|s− h∗(s))ds′

− 1

β

∫
S
u′(h∗(s′))q′(s′|s− h∗(s))ds′. (16)

Proof: Now derive the Generalized Euler Equation. Observe that interior h∗ satisfies

the First Order Condition for any s:

u′(h∗(s))− βδD(s) = 0. (17)

Using the Fundamental Theorem of the Integral Calculus for Riemann-Stieltjes in-

tegrals (see Hewitt and Stromberg (1965) Theorem 18.19 or Amir (1997), Theorem 3.2)

one obtains:

d

di

∫
S
v∗(s′)Q(ds′|i)

∣∣∣∣
i=s−h∗(s)

= −
∫
S

(v∗)′(s′)q′(s′|s− h∗(s))ds′. (18)

Then differentiating v∗:

(v∗)′(s) = u′(h∗(s)))(h∗)′(s) + δD(s)(1− (h∗)′(s)).

Hence

∫
S

(v∗)′(s)q′(s|i)ds =

∫
S
u′(h∗(s))(h∗)′(s)q′(s|i)ds

+δ

∫
S
D(s)(1− (h∗)′(s))q′(s|i)ds.

Substituting i = s− h∗(s) above, and applying (18) one obtains:

−D(s) =

∫
S
u′(h∗(s′))(h∗)′(s′)q′(s′|s− h∗(s))ds′

+δ

∫
S
D(s′)(1− (h∗)′(s′))q′(s′|s− h∗(s))ds′.

Hence and by (17)

−D(s) =

∫
S
u′(h∗(s′)))(h∗)′(s′)q′(s′|s− h∗(s))ds′

+
1

β

∫
S
u′(h∗(s′))(1− (h∗)′(s′))q′(s′|s− h∗(s))ds′,
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or equivalently (16).

Clearly, replacing (h∗)′(s) = 1− (g∗)′(s), were g∗ denote equilibrium investment one

obtains the generalized Euler equation:

u′(h∗(s))

βδ
=

(
1− 1

β

)∫
S
u′(h∗(s)))(g∗)′(s′)q′(s′|g∗(s))ds′

−
∫
S
u′(h∗(s′))q′(s′|g∗(s))ds′.

EXTENSIONS

The focus of this chapter has been on the case in which S is a bounded interval. Using

the results from Balbus et al. (2020), one can conclude that the thesis of Theorem 1

are satisfied for “weightly-bounded” utility functions. Then, applying the main result in

Balbus et al. (2018), one deduces that the thesis of Theorem 2 is also valid in case of

“bounded by sequence” utility functions. The definition of “weightly-bounded” function

is formalized as follows.

Definition 5 (w-bounded function) Let w : S 7→ (0,∞). A function v is w-bounded if

there exists M > 0 such that for any s ∈ S, |v(s)| ≤M w(s).

The space of w-bounded functions is a Banach space with the natural norm

||v||w := sup
s∈S

∣∣∣∣ v(s)

w(s)

∣∣∣∣ .
Another approach is a “boundedness by a sequence”. Let (Sj)

∞
j=1 be a sequence of

Borel subsets of S such that any of Sj has non-empty interior and S1 ⊂ S2 ⊂ . . . , and

let m := (mj)
∞
j=1 be a strictly monotone sequence of positive numbers such that

r := sup
j∈N

mj+1

mj
<∞.

The formal definition of “bounded by a sequence” is now provided.

Definition 6 (m-bounded) The function v is m-bounded if for any j ∈ N, ||v||j :=

sup
s∈Sj
|v(s)| ≤ mj.

27



Let us focus attention on the set of Borel measurable functions. The seminorms ||v||j

define a locally convex space of functions bounded on all Sj . The set of m-bounded

functions is embedded into a larger space

V :=

v : S 7→ R, v is Borel,||v||j <∞, for all j, and

∞∑
j=1

||v||j
mj

ζj−1 <∞


for some ζ ∈ (0, 1). Clearly V is a vector space with the following norm

||v|| :=
∞∑
j=1

||v||j
mj

ζj−1.

The set of generic elements of such functions is:

Vm := {v ∈ V : v(0) = 0, ||v||j ≤ mj for all j ∈ N}

Clearly Vm ⊂ V. Due to Matkowski and Nowak (2011) the following is true:

Proposition 1 The tuple (V, || · ||) defines a Banach space and Vm is a closed subset of

V.

Rincon-Zapatero and Rodriguez-Palmero (2003) provide the following definition:

Definition 7 (1-local contraction) The operator Φ : V 7→ V is a 1-local contraction if

there is a constant ξ ∈ (0, 1) such that

||Φ(v1)− Φ(v2)||j ≤ ξ||v1 − v2||j+1.

Rincon-Zapatero and Rodriguez-Palmero (2003, 2009)7 show the following:

Proposition 2 Let Φ : Vm 7→ Vm be a 1-local contraction with a constant ξ ∈ (0, 1) and

suppose ξr < ζ. Then Φ is a contraction mapping with respect to the metric induced by

the norm || · || and its modulus is ξr
ζ .

It is now useful to consider assumptions for both approaches: “weightly-bounded”

as well as “bounded by sequence” when studying the existence of SMPE.

7See also Matkowski and Nowak (2011).
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WEIGHTED BOUNDED FUNCTIONS

Start with the assumption in case of weighted bounded felicity function.

Assumption 5 (w-bounded approach) Suppose that Assumption 1 holds. Moreover, there

exists a Borel function w : S 7→ [1,∞) such that:

� The felicity function satisfies ||u||w ≤ ū;

� The transition function satisfies

Q̄ := sup
s∈S

sup
i∈[0,s]

∫
S w(s′)Q(ds′|i)

w(s)
<∞

and

δQ̄ < 1.

Let ∆n be the set of all non-negative Borel measures on [0, n] such that any of

η ∈ ∆n satisfies η([0, n]) ≤ n. Let ∆ :=
∞∏
n=1

∆n. Endow ∆n with the standard weak

topology, and ∆ with the product topology. Let H and G be as in (3) and respectively

(12). Endow G with adapted weak topology i.e. hn(s) →w h(s) as n → ∞ whenever

h is continuous at s. There is an isomorphism between I and a subset of product of

measures on ∆. We provide the construction by Balbus et al. (2020). Any h ∈ I induces

a unique element (ηn)∞n=1 ∈ ∆ such that

h ∈ G 7→ ηn([0, s]) = s− h(s), for s ∈ [0, n].

In other words, s− h(s) is a cumulative distribution function of ηn(·) on [0, n].

Let

M0 :=
ū

1− δQ̄
and let st be a Markov chain generated by a policy h ∈ I, i.e. with the transition

probability Q(·|h(s)). Then for any t,

Es(u(h(st))) ≤ Es (u(st)) ≤ ūEs (w(st)) .

Then

Esδtw(st+1) = Es
(
δt
∫
S
w(s′)Q(ds′|st − h(st))

)
≤ δQ̄Esδt−1w(st).

Hence Vh is well defined w-bounded function, and

Vh(s) ≤ Es

( ∞∑
t=1

w(st)δ
t−1

)
≤ ū

1− δQ̄
w(s) = M0w(s).
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Then, one constructs SMPE h∗ as a fixed point of br(h), which is continuous and maps

I into itself (Lemma 13 in Balbus et al. (2020)). Hence the thesis of Theorem 1 are

satisfied.

FUNCTIONS BOUNDED BY A SEQUENCE

Using the results in Balbus et al. (2018), the thesis of Theorem 2 in case of m-bounded

utility functions on S are valid. The following assumptions is needed:

Assumption 6 (m-bounded approach) Assume 2. Moreover, suppose there exists a mono-

tone sequence m = (mj)
∞
j=1 such that m1 > 0 and r = sup

j∈N

mj+1

mj
<∞, and an ascending

sequence of sets (Sj)
∞
j=1 such that Sj ⊂ S and such that

� for any j, sup
s∈Sj

u(s) = (1− β)mj;

� for any j, p(Sj+1|i, s) = p(S|i, s) = 1 whenever, s ∈ Sj and i ∈ [0, s];

� the sequence m satisfies

δ sup
j∈N

mj+1

mj
≤ β.

In other words, Q(Sj+1|i, s) = 1 whenever s ∈ Sj , that is the state visits sequentially

S1, S2, . . . almost surely. Recall the definitions of A(v), B(v) and T (v). The operator T

maps Vm into itself. Indeed, for s ∈ Sj

T (v)(s) = u(B(v)(s)) + δ

∫
S
v(s′)Q(ds′|s−B(v)(s))

≤ (1− β)mj + δmj+1 ≤

(
1− β + β sup

j∈N

mj+1

mj

)
mj ≤ mj .

Furthermore, T is a 1−local contraction with δ on Vm, hence and by Proposition 2 it is

a contraction mapping with the metric induced by the norm on || · || on Vm. (Vm, || · ||)

is a complete metric space, hence T has a unique fixed point in T . Hence the thesis of

Theorem 2 are satisfied.

RECURSIVE UTILITY AND GENERAL CERTAINTY EQUIVALENTS

Standard dynamic models rely on the assumption that the utility functions of successors

defined over sequences of random levels of consumption are represented by a time addi-

tive expected overall utility, which discounts future temporal utilities at a constant rate.
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This approach cannot explain some problems in economics. For example, the standard

discounted utility cannot explain the equity premium puzzle postulated by Mehra and

Prescott (1985), and the standard expectation cannot explain the Allais and Ellsberg

paradoxes, see e.g. Chew (1983), Dekel (1986), Chew and Epstein (1989). To rem-

edy these issues, some authors propose other approaches based on recursive utility and

general certainty equivalents. It is best to start our discussion with some basic introduc-

tion to these two generalizations and then provide its application to quasi-hyperbolic

discounting.

RECURSIVE UTILITY AND CERTAINTY EQUIVALENTS: BASIC DEFINITIONS

AND EXAMPLES

Let us start with the standard deterministic discounted utility function for the self t

Vt =
∞∑
τ=t

u(cτ )δτ−t

that obeys the Bellman equation. Koopmans (1960) provides the generalization of this

approach toward the recursive utility function, i.e., Vt that satisfies the equation,

Vt = A(ct, Vt+1),

where A is a function called aggregator. In case of the standard utility, the aggregator

has an affine form A(ct, Vt+1) = u(ct) + δVt+1

Vt = u(ct) + δVt+1.

If (cτ )∞τ=t is a sequence of lotteries adapted to some filtration (Fτ )∞τ=t, then Vt is a Ft-

measurable random function. Kreps and Porteus (1978) provide the following model:

Vt = A(ct,EtVt+1),

where Et is the expectation conditioned by Ft. Epstein and Zin (1989) generalized the

utility substituting Et by a more general certainty equivalent operator.

Let L 1 be the equivalence class of real valued integrable functions endowed with an

order.

Definition 8 (Certainty Equivalent Operator (COP)) For any t, the operator Mt map-

ping L 1 into Ft- measurable function is called certainty equivalent operator if
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� Mt(α) = α whenever α is constant;

� Mt(·) is a monotone operator on L 1.

The recursive utility that connects the general aggregator approach and the certainty

equivalent operator was introduced by Epstein and Zin (1989). Their model can be

written in the following form:

Vt = A(ct,Mt(Vt+1)).

The recursive utility (Vt)t solving the above system of equations is dynamically consis-

tent. It means that the following condition holds: for any t ∈ N let ct = (cτ )∞τ=t be a con-

sumption stream, and let c̃t := (c̃τ )∞τ=t be another one. Then Vt(ct, c
t+1) ≤ Vt(ct, c̃t+1) if

and only if Vt+1(ct+1) ≤ Vt+1(c̃t+1). In other words, the decision maker never regrets the

decision made yesterday. The basic problem is the existence and uniqueness of recursive

utility function. The issue has the positive solution under distinct assumptions.8

The most common certainty equivalent operators are:

� Entropic risk measure postulated by Weil (1993);

Mt(Vt+1) = −1

r
ln
(
Et
(
e−rVt+1

))
for r 6= 0;

� Kreps and Porteus measure postulated in their (1978) paper:

Mt(Vt+1) =
(
EtV r

t+1

) 1
r

for r > 0.

Both postulated measures are special cases of quasi-linear mean:

Mt(Vt+1) = ψ−1 (Etψ(Vt+1)) ,

for some monotone and invertible function ψ (see Chew (1983) and Dekel (1986)).

Another interesting operator is the so-called max-min operator defined by Gilboa and

Schmeidler (1989), which can applied in the large body of robust control literature:

Vt := min
θ∈Θ

EθtVt+1,

8For the survey on this topic, we refer the reader to Balbus (2020), Bäuerle and Jaśkiewicz (2018),

Becker and Rincón-Zapatero (2021), Bich et al. (2018), Bloise and Vailakis (2018), Borovicka and

Stachurski (2020), Jaśkiewicz et al. (2014), Le Van and Vailakis (2005), Marinacci and Montrucchio

(2010), Martins-da Rocha and Vailakis (2010), Weil (1993) and the references therein.
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here Eθt is the parameterized expectation, and the value θ ∈ Θ is unknown for the

current self (see e.g. Balbus et al. (2015b)). Some certainty equivalent operators are

not provided explicitly but have application due to useful properties. For example, the

certainty equivalent by Gul (1991) reflects elation and disappointment aversion.

GENERALIZED QUASI-HYPERBOLIC DISCOUNTING AND CERTAINTY EQUIV-

ALENTS

The β − δ problem can be generalized in a number of directions, and we discuss one

such generalization here. Let each self t have the utility

Wt = A1(ct,Mt(Vt+1)),

where (Vt)
∞
t=1 is the sequence of recursive utility satisfying

Vt = A2(ct,Mt(Vt+1)).

Here A1 is an aggregator connecting present consumption and the expected utility of

the successor. In turn, A2 is an aggregator connecting a consumption of future self and

the expected utility the its successor. For example, β − δ problem has this form with

A1(ct,EtVt+1) = u(ct) + βδEtVt+1, and A2(ct,EtVt+1) = u(ct) + δEtVt+1

and the standard expectation. More generally, one can substitute the expectation op-

erator by the following risk measure:9

Mt = − ln
(
Et(e−Vt+1)

)
.

Policy h∗ is SMPE if h∗(s) ∈ arg max
c∈[0,s]

P (c, s;h) for any s ∈ S with

P (c, s;h) = u(c)− βδ ln

∫
S
e−Vh(s′)Q(ds′|s− c).

Here Vh solves the following Woodmans-Bellman equations

Vh(s) = u(h(s))− δ ln

∫
S
e−Vh(s′)Q(ds′|s− h(s)).

Another possible generalization involves Koopmans et al. (1964) form. Let the A1

be as follows:

A1(ct, Vt+1) = ln(1 + ct + βδVt+1),

9In case of β = 1 the utility reduces to this studied in Bäuerle and Jaśkiewicz (2018) or in stochastic

games by Asienkiewicz and Balbus (2019).
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and let A2 be as follows

A2(ct, Vt+1) =
√
c2
t + δVt+1,

and

Mt(Vt+1) =
(
Et(V 3

t+1)
) 1

3 .

The current payoff has the form

P (c, s;h) = ln(1 + c+ βδ

(∫
S
Vh(s′)Q(ds′|s− c)

)
.

Here Vh solves the Koopmans-Bellman equations:

Vh(s) =

√
h2(s) + δ

(∫
S
V 3
h (s′)Q(ds′|s− h(s))

) 1
3

.

The generalized Bellman equation techniques can be easily adopted to cover these

extensions. See Balbus et al. (2022).

MULTIDIMENSIONAL STATES

The generalized Bellman equation approach extends easily to the multi-dimensional

state space. To see this, let the state space be S = [0, s̄] ⊂ Rn and, for each s ∈ S, the

action set A(s) ⊂ A ⊂ Rm for some A. Period utility is now u : A→ R+. Assumption 2

need to be generalized as follows:

Assumption 7 Assume

� for each s ∈S set A(s) is a compact and subcomplete sublattice with A(0) = {0}

moreover s 7→ A(s) is measurable,

� u is continuous, increasing and supermodular with u(0) = 0;

� transition probability Q(·|a, x) = p(·|s, a) + (1− p(S|a, x))δ0(·), satisfies:

– p(·|a, s) is a finite measure such that for any s > 0 and a ∈ A(s), p(S|i, s) <

1, and p({0}|0, 0) = 1;

– for every bounded and Borel measurable function f such that f(0) = 0,

a 7→
∫
S
f(s′)Q(ds′|a, s) (19)

is decreasing and supermodular in a and continuous in (a, s).
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Under assumption 7 the generalized Bellman equation approach can still be used

to analyze SMPE but now, as the B(v)(s) can be multivalued, some of its selection

need to be specified. Balbus et al. (2015c) use the greatest and the least selection,

i.e. B(v)(s) and B(v)(s). This allows to specify two operators T and T , respectively.

As B(v) is multivalued equilibrium uniqueness is not guaranteed but its existence and

approximation can constructed by applying the following theorem.

Theorem 5 Let assumption 7 hold. Then, the set of equilibrium continuation values

possesses the least v? = T (v?) and the greatest w? = T (w?) elements corresponding to

the greatest h
?

and the least h? SMPE.

SELF-GENERATION APPROACH

In this last section inspired by the work of Abreu et al. (1990) or Mertens and Parthasarathy

(1987), but adopted from the case of repeated games to dynamic games and short-

memory equilibria (see also Doraszelski and Escobar (2012)), we discuss a self-generation

approach to constructing a large set of non-stationary equilibria in this model. This

method relies on the successive approximation of the sets of functions or equilibria

value. The advantage of this method is relatively weak assumption on felicity functions

and the transition probability. Moreover the method is useful when there are multiple

equilibria.10 The drawback is that this method allows to verify the existence of equilib-

ria in a set of non-stationary strategies. In particular, after verifying the existence of

the equilibria, we never know whether they are stationary or not, even if the model is

time-invariant. In this subsection we briefly present the results by Balbus and Woźny

(2016). Similar method can be found in non-stationary models as well. For example see

Balbus et al. (2020), or in case of bequest games, see Balbus et al. (2017).

We come back to the standard infinite horizon model. For the main result in this

section, the following assumptions are needed.

Assumption 8 Assume 1 and moreover assume that for any s0 ∈ S the set Z0(s0) :=

{i ∈ S : Q({s0}|i) > 0} is at most countable.

This new assumption is not very restrictive, as is illustrated by the following example.

10Multiplicity of equilibria in quasi-hyperbolic discounting models was demonstrated by Krusell and

Smith (2003), Bernheim et al. (2015) and Cao and Werning (2018) among others. See also an example

with three SMPE in the closely related class of altruistic games in Balbus et al. (2013a).
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Remark 3 Observe that if Q(·|i) is nonatomic, then any of the set Z0(s0) is empty and

if Q(·|i) is deterministic such that Q(A|i) = 1A(G(i)) for some strictly increasing G,

then any of Z0(s0) has at most one element. The similar conclusion holds for:

Q(A|i) = αQ̃(A|i) + (1− α)1A(G(i)),

whenever Q̃(·|i) is nonatomic, α ∈ (0, 1) and G is strictly increasing.

The generic set of equilibria is again G endowed with the weak topology. For any

W ⊂ G define

B(W) :=
⋃
h∈W

arg max
c∈[0,s]

P (c, s;h).

In other words, B maps 2G into itself. Obviously (2G ,⊂) is complete lattice and B

is increasing under set inclusion (i.e. W1 ⊂ W2 implies B(W1) ⊂ B(W2)). By the main

theorem in Tarski (1955), there exists a nonempty complete lattice of fixed points (and

in particular, the greatest fixed point under set inclusion, i.e. W∗).

Define the sequence of iterations

Wt+1 = B(Wt)

for W0 = G. Now introduce the following definition:

Definition 9 (Self-generating) Let W ⊂ G. We say that W is self-generating if W ⊂

B(W).

Denote by E ⊂ G the set of all equilibria. The following lemma shows E is the

greatest self generating set.

Lemma 1 (Self-generating property) If W is self generating, then W ⊂ E.

Theorem 6 (Construction of equilibria values) Let E to be the set of equilibria. Then,

E is non-empty and it is the greatest fixed point of B. Moreover:

E =

∞⋂
t=1

Wt.

Proof: Due to series of Lemmas in Balbus et al. (2020), B(W) is a nonempty weakly

compact set whenever W is. As a result,
∞⋂
t=1
Wt 6= ∅ and is weakly compact. Hence:

W∗ ⊂
∞⋂
t=1
Wt.
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On the other hand,

B

( ∞⋂
t=1

Wt

)
⊂ Wt+1,

for any t, hence taking intersection over t, we have

B

( ∞⋂
t=1

Wt

)
⊂
∞⋂
t=1

Wt

Furthermore,

B

( ∞⋂
t=1

Wt

)
⊃
∞⋂
t=1

Wt.

Indeed, h ∈
∞⋂
t=1
Wt, hence h(s) ∈ arg max

c∈[0,s]
P (c, s;ht) for all s and some sequence ht

such that ht ∈ Wt. Since any of Wt is compact and Wt is descending, without loss of

generality suppose ht →w h̃ for some h̃ ∈
∞⋂
t=1
Wt. By Lemma 7 c) in Balbus et al. (2020),

P (c, s;h) is continuous in h, hence h(s) ∈ arg max
c∈[0,s]

P (c, s; h̃), hence h ∈ B(
∞⋂
t=1
Wt).

Consequently,

W∗ =

∞⋂
t=1

Wt.

Let E ⊂ G be the set of all equilibria continuation values. Observe that h ∈ E implies

that there is ht a sequence from E such that for any s ∈ S, h(s) ∈ arg max
c∈[0,s]

P (c, s;h1),

h1(s) ∈ arg max
c∈[0,s]

P (c, s;h2), h2(s) = arg max
c∈[0,s]

P (c, s;h3) and so on. Consequently h1 ∈

E , hence h ∈ B(E). In other words E ⊂ B(E), hence E is self generating.

Obviously any fixed point ofW is self-generating. In particularW∗ is self-generating,

hence by Lemma 1 one obtains:

W∗ ⊂ E . (20)

But E ⊂ Wt for any t ∈ N. hence

E ⊂
∞⋂
t=1

Wt =W∗.

Therefore, by (20),

E =

∞⋂
t=1

Wt =W∗.
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CONCLUSION

Existence and characterization of TCPs in a canonical version of dynamic choice prob-

lem for a quasi-hyperbolic consumer have been studied extensively in the literature.

This chapter presents results on the existence of TCPs in such benchmark model, and

also discusses some of its natural generalization. Further, the case of TCPs as SMPE,

as well as the case of more general forms of (non-stationary) Markov perfect equilib-

ria via self-generation methods are considered in the chapter. In the case of TCP as

SMPE equilibria, we have also given conditions under which uniqueness of TCPs can

be established, and we have also discussed when monotone comparative statics of TCP

in natural parameters (i.e., discount rates) of the model is possible. Finally, we have

discussed when sufficient conditions are present for the existence of generalized Euler

equation, and we mention the additional extensions to more general models of dynamic

biases.

There is an emerging literature that studies the question of the structure of TCPs

in this more general behavioral discounting case. This work includes not only models

with present bias, but models with future-bias, backward discounting, hyperbolic dis-

counting models, models with general recursive aggregators that generate dynamically

inconsistent preferences, models of altruistic dynastic choice etc. There are also some

results on the existence of SMPE in deterministic models for the quasi-hyperbolic case

(e.g., see Bernheim et al. (2015), Cao and Werning (2018) and Balbus et al. (2022)),

as well as work on long-memory solutions for TCPs in models with more general dis-

counting features (see for example Balbus et al. (2021) where many additional results

are presented).
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