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Abstract

This supplement contains the proofs omitted from the main text of the paper

as well as preliminaries on the law of large numbers and lattice theory.

A Preliminaries

In this section we introduce some mathematical notions in measure and lattice theory

that are employed in our main analysis.

A.1 Fubini extensions and the law of large numbers

We begin by defining the notion of super-atomless probability space.1 Let (Λ,L, λ) be

a probability space. For any E ∈ L such that λ(E) > 0, let LE :=
{
E ∩ E ′ : E ′ ∈ L

}
∗ Faculty of Mathematics, Computer Sciences and Econometrics, University of Zielona Góra, Poland.
† Department of Economics, University of Sussex, UK.
‡ Department of Economics, Arizona State University, USA.
§ Department of Quantitative Economics, Warsaw School of Economics, Warsaw, Poland.
1 The following definition is by Podczeck (2009, 2010), which we find to be the most convenient for

our purposes. However, equivalent definitions are provided in Hoover and Keisler (1984), who call such

spaces ℵ1-atomless, and Keisler and Sun (2009), who dubbed such spaces rich.
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and λE be the re-scaled measure from the restriction of λ to LE. Let LE
λ be the set of

equivalence classes of sets in LE such that λE(E1△E2) = 0, for E1, E2 ∈ LE.2 We endow

the space with metric dE : LE
λ × LE

λ → R given by dE(E1, E2) := λE(E1△E2).

Definition 1 (Super-atomless space). A probability space (Λ,L, λ) is super-atomless if

for any E ∈ L with λ(E) > 0, the space (LE
λ , d

E) is non-separable.

Classical examples of super-atomless probability spaces include: {0, 1}I with its usual

measure when I is an uncountable set; the product measure [0, 1]I , where each factor is

endowed with Lebesgue measure and I is uncountable;3 subsets of these spaces with full

outer measure when endowed with the subspace measure, or an atomless Loeb probability

space. Furthermore, any atomless Borel probability measure on a Polish space can be

extended to a super-atomless probability measure (see Podczeck, 2009).

Given a probability space (Λ,L, λ), a collection of random variables (Xα)α∈Λ is essen-

tially pairwise independent, if for (λ⊗ λ)-almost every (α, α′) ∈ Λ × Λ, random variables

Xα and Xα′ are independent. For any set Ω and E ⊆ (Λ × Ω), we denote its sections by

Eα :=
{
ω ∈ Ω : (α, ω) ∈ E

}
and Eω :=

{
α ∈ Λ : (α, ω) ∈ E

}
, for any α ∈ Λ and ω ∈ Ω.

Similarly, for any function f defined over λ× Ω, let fα and fω denote the section of f for

a fixed α, ω, respectively. Consider the following definition.

Definition 2 (Fubini extension). The probability space (Λ×Ω,L⊠F , λ⊠P ) is a Fubini

extension of the natural product of probability spaces (Λ,L, λ) and (Ω,F , P ) if:

(i) L⊠ F includes all sets from L ⊗ F ;

(ii) for an arbitrary set E ∈ L⊠F and (λ⊗P )-almost every (α, ω) ∈ Λ×Ω, the sections

Eα and Eω are F - and L-measurable, respectively, while

(λ⊠ P )(E) =

∫
Ω

λ(Eω)P (dω) =

∫
Λ

P (Eα)λ(dα).

A Fubini extension is rich, if there is a (L⊠F)-measurable function X : Λ×Ω → R such

that the random variables (Xα)α∈Λ is essentially pairwise independent and the random

variable Xα has the uniform distribution over [0, 1], for λ-almost every α ∈ Λ.

2 We denote E1△E2 := (E1 \ E2) ∪ (E2 \ E1).
3 Indeed, Maharam’s theorem shows that the measure algebra of every super-atomless probability

spaces must correspond to the countable convex combination of such spaces. See Maharam (1942).
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Existence of a rich Fubini extension is proven in Proposition 5.6 of Sun (2006), for

Λ = [0, 1]. Moreover, L can not be a collection of Borel subsets of Λ (see Proposition

6.2 in Sun, 2006). In fact, Podczeck (2010) there exists a rich Fubini extension if and

only if the space is super-atomless. Moreover, without loss, one may assume the random

variables (Xα)α∈Λ to be independent, rather than pairwise-independent.

A process is a (L ⊠ F)-measurable function with values in a Polish space. For any

process f and set E ∈ L such that λ(E) > 0, we denote the restriction of f to E × Ω by

fE. Naturally, LE ⊠ F :=
{
W ∈ L ⊠ F : W ⊆ E × Ω

}
and (λE ⊠ P ) is a probability

measure re-scaled from the restriction of (λ ⊠ P ) to (LE ⊠ F). The following version of

(exact) Law of Large Numbers is by Sun (2006).

Proposition 1 (Law of Large Numbers). Suppose that f is a process from a rich Fubini

extension (Λ × Ω,L ⊠ F , λ ⊠ P ) to some Polish space. Then, for all E ∈ L such that

λ(E) > 0 and P -almost every ω ∈ Ω, we have λ(fE
ω )−1 = (λE ⊠ P )(fE)−1.4

A.2 Lattices, chains, and fixed points

A partial order ≥X over a set X is a reflexive, transitive, and antisymmetric binary

relation. A partially ordered set, or a poset, is a pair (X,≥X) consisting of a set X and a

partial order ≥X . Whenever it causes no confusion, we denote (X,≥X) with X.

For any x, x′ ∈ X, their infimum (the greatest lower bound) is denoted by x∧ x′, and

their supremum (the least upper bound) by x ∨ x′. The poset X is a lattice if for any x,

x′ ∈ X both x ∧ x′ and x ∨ x′ belong to X. Set A is a sublattice of X, if A ⊆ X and it is

a lattice with the induced order, with x ∧ x′ and x ∨ x′ defined with ≥X .5

For any subset A of a poset X, we denote the supremum and infimum of A by
∨

A

and
∧

A, respectively.6 A lattice X is complete, if each both
∨
A and

∧
A belong to X,

4 Given the probability space (Λ,L, λ) and a measurable function f : Λ → Y , we denote measure

λf−1(U) := λ
(
{α ∈ A : f(α) ∈ U}

)
, for any measurable subset U of Y .

5 A basic example of a lattice is the Euclidean space Rℓ endowed with the natural product order ≥,

i.e., we have x′ ≥ x if x′
i ≥ xi, for all i = 1, . . . , ℓ. In this case, we have x ∧ x′ and x ∨ x′ are given by

(x ∧ x′)i = min{xi, x
′
i} and (x ∨ x′)i = max{xi, x

′
i}, for all i = 1, . . . , ℓ.

6This is to say that,
∨
A is the least element of X such that

∨
A ≥ a, for all a ∈ A. Clearly, by

definition, we have x ∨ x′ =
∨
{x, x′}. We define

∧
A analogously.
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for any A ⊆ X. We define a complete sublattice analogously.

A function f : X → R over a lattice X is supermodular in x if f(x∧ x′) + f(x∨ x′) ≥

f(x)+f(x′). If X and T are posets, then function f : X×T → R has increasing differences

in (x, t) if, for any x′ ≥X x and t′ ≥T t, we have f(x′, t′) − f(x, t′) ≥ f(x′, t) − f(x, t).

Finally, correspondence Γ : X ×Y → Z, where X and Y are posets and Z is a lattice,

satisfies strict complementarities if for any x′ ≥ x, y′ ≥ y, z ∈ Γ(x, y′), and z′ ∈ Γ(x′, y),

we have z ∧ z′ ∈ Γ(x, y) and z ∨ z′ ∈ Γ(x′, y′).

B Auxiliary results

Lemma B.1. Let (Ξ,≥) be a poset with its order topology, and {fk} be a sequence of

increasing and monotone inf-preserving functions fk : Ξ → R. Whenever xk ↓ x in Ξ and

fk ↓ f (pointwise), then fk(xk) → f(x).

Proof. Let n ∈ N. Since {fk} is decreasing sequence of increasing functions and xk ↓ x,

then k ≥ n implies f(x) ≤ fk(xk) ≤ fk(xn). Thus, we have f(x) ≤ lim infk→∞ fk(xk) ≤

lim supk→∞ fk(xk) ≤ f(xn). To finish the proof, let n → ∞.

Lemma B.2. Let {νk} be a sequence of probability measures on a Polish space S, and

{hk} be a sequence of bounded, measurable functions hk : S → R. If νk ↓ ν (stochastically

and in weak topology) and hk ↓ h, then limk→∞
∫
hkdνk =

∫
hdν.

Proof. It is a consequence of Lemma B.1, where Ξ is a space of bounded, measurable, real

valued functions on S, and fk(x) :=
∫
S
x(s)νk(ds), xk(s) = hk(s).

Lemma B.3. Let S1, S2 be topological spaces and f : S1 × S2 7→ R be a continuous

function. Let Γ : S1 ⇒ S2 be a continuous, compact-valued correspondence and Γ∗(x) :=

arg max
y∈Γ(x)

f(x, y). If xk → x in S1, yk → y in S2, and yk ∈ Γ∗(xk), then y ∈ Γ∗(x).

Proof. Let y′ ∈ Γ(x). By continuity of Γ, for any k ∈ N, there is y′k ∈ Γ(xk) such that

y′k → y′. Since yk ∈ Γ∗(xk), we have f(xk, yk) ≥ f(xk, y
′
k), for all k ∈ N. By continuity of

f , we have f(x, y) ≥ f(x, y′). Since y′ ∈ Γ(x) is arbitrary, hence y ∈ Γ∗(x).
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C Omitted proofs

Proof of Proposition 4. This argument is analogous to Echenique (2005). Let x̄ be the

greatest element of X. Let I be a set of ordinal numbers with cardinality strictly greater

than X. Define the following transfinite sequence with the initial element x0 = x̄ and

xi =
∧{

f(xj) : j < i
}

, for i ∈ I \ {0}. We claim that {xi} is a well-defined decreasing

sequence. Clearly x1 = f(x0) ≤ x0. Suppose that {xj}j<i is well-defined and decreasing

for some i. Then
{
f(xj)

}
j<i

is a decreasing sequence, that has an infimum equal to xi.

Consequently xj is well defined and decreasing on [0, i]. By transfinite induction, the

transfinite sequence {xi}i∈I is well defined and decreasing. Since I has the cardinality

strictly greater than X, there is no one-to-one mapping between I and X. Consequently,

take the least element ī in {i ∈ I : xi = xi+1}. Then xī = xī+1 = f(xī), and e∗ := xī is a

fixed point of f . To show that e∗ =
∨{

x ∈ X : f(x) ≥ x
}

, set X :=
{
x ∈ X : f(x) ≥ x

}
.

Obviously, we have e∗ ∈ X . For any other y ∈ X , we have y ≤ x0. Suppose there is

i ∈ I such that y ≤ xj, for any j < i. Since y ∈ X , by transfinite induction, we have

y ≤ f(y) ≤ f(xj). Thus, y ≤
∧{

f(xj) : j ≤ i
}

and y ≤ xi, for any i ∈ I , including ī. □

Proof of Theorem 1. By Proposition 5.6 of Sun (2006) and Theorem 1 in Podczeck

(2010) there is a probability space (Ω,F , P ) and a rich Fubini extension of a natural

product space on Λ × Ω, denoted by (Λ × Ω,L⊠F , λ⊠ P ). Consequently, we can find a

process η : Λ×Ω → [0, 1] such that the family (ηα)α∈Λ is essentially pairwise independent

with the uniform distribution on [0, 1]. Define (ηn)n∈N as a set of independent copies of

η. Construct a sequence (Xn)∞n=1 satisfying theses (i)–(iii). Let (I, I, ι) be the standard

interval I = [0, 1], with Borel sets I, and the Lebesgue measure ι. For any µ ∈ M, there

is a (I ⊗ T ⊗A)-measurable function Gµ : I × T × A 7→ T such that

ι
(
Gµ

(t,a)

)−1
(Z) = ι

({
l ∈ I : Gµ(l, t, a) ∈ Z

})
= q(Z|t, a, µ),

for any Z ∈ T .7 For any initial distribution τ1 ∈ MT , there exists a T -valued (I ⊗ T )-

measurable function G̃ such that τ0 = ιG̃−1.8 Put X1 := G̃(η1). Having the initial random

7 For example, see Lemma A5 in Sun (2006).
8 Again, see Lemma A5 in Sun (2006).
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variable X1, define the following process Xn+1 = Gµn(ηn+1, Kn), for n > 1, where Kn :=(
Xn, σ(Xn, τn)

)
, τn := (λ⊠P )X−1

n , and µn := (λ⊠P )K−1
n . As usual, put (Kn)α(ω) :=

Kn(α, ω) for (α, ω) ∈ Λ × Ω. Let Sn by the sigma field generated by {ηk : k ≤ n}. By

definition of X1 and Xn+1, we conclude that Xn is Sn-measurable. Hence, (Xn)α and

(ηn+1)α are independent, for λ-almost every α ∈ Λ. We show that (i)–(ii) are satisfied

by induction on n. For n = 1, the claim holds by essential independence of η1 and X1.

Moreover, by Proposition 1, for P -almost every ω ∈ Ω the sampling distribution λ(X1)
−1
ω

of X1, i.e., satisfies λ(X1)
−1
ω = (λ⊠P )X−1

1 = τ . Again by Proposition 1, for P -almost all

ω ∈ Ω, we have λ(K1)
−1
ω = (λ⊠ P )K−1

1 := µ1. Hence, (ii) is satisfied for n = 1. Suppose

that both (i) and (ii) hold, for some n ≥ 1. Observe that
(
(ηn+1)α, (Xn)α

)
α∈Λ is a family

(λ ⊗ λ)-almost everywhere pairwise conditionally independent random variables. This

follows from induction hypothesis for (Xn)α, and the previous observation that random

variables (Xn)α and (ηn+1)α are independent λ-almost surely. Hence, by construction of

Xn+1, the family
(
(Xn+1)α

)
α∈Λ is (λ⊗λ)-almost surely pairwise conditionally independent.

Hence the property (i) is satisfied for (n+ 1). By Proposition 1, we obtain (ii) for (n+ 1).

Thus, (i) and (ii) hold for all n ≥ 1. To show (iii), let (Sn)α be the sigma field generated

by {(ηk)α : k ≤ n} and similarly (Σn)α by {(Xk)α : k ≤ n}. By definition of Xn and (Σn)α

we conclude that σ
(
(Xn)α

)
⊆ (Σn)α ⊂ (Sn)α. Let E be the standard expectation with

respect to P . Hence the conditional distribution of (Xn+1)α with respect to (Σn)α satisfies

P
(
(Xn+1)α ∈ Z

∣∣(Σn)α
)

= E
[
P
(
(Xn+1)α ∈ Z

∣∣(Sn)α)|(Σn)α

]
= E

[
P
(
Gµn((ηn+1)α, (Kn)α) ∈ Z

∣∣(Sn)α
)
|(Σn)α

]
= E

[
q
(
Z|(Kn)α, µn

)∣∣(Σn)α

]
= q

(
Z
∣∣(Xn)α, σ

∗((Xn)α, τn
)
, µn

)
for λ-almost all α ∈ Λ and all Z ∈ T , where the last equality follows from independence

of (ηn+1)α and (Xn)α. Hence, property (iii) is satisfied. □

Proof of Lemma 1. Suppose that vn ∈ V , for all n ∈ N, and vn → v. Furthermore,

let (µk) and (Φk) be decreasing sequences in M and D, respectively, such that µk → µ

(weakly) and Φk → Φ (pointwise). Take any t ∈ T and ϵ > 0. There is n0 ∈ N such that,
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for all k ∈ N and n ≥ n0, we have

|v(t, µk,Φk) − v(t, µ,Φ)| ≤ |v(t, µk,Φk) − vn(t, µk,Φk)| + |vn(t, µk,Φk) − vn(t, µ,Φ)|

+ |vn(t, µ,Φ) − v(t, µ,Φ)| ≤ 2

3
ϵ + |vn(t, µk,Φk) − vn(t, µ,Φ)| (1)

Take any n ∈ N satisfying (1). Therefore, since vn ∈ V , for large enough k, we obtain∣∣vn(t, µk,Φn)− vn(t, µ,Φ)
∣∣ ≤ ϵ/3. Given (1), this implies |v(t, µk,Φk)− v(t, µ,Φ)| < ϵ, for

large k. Hence v is monotonically sup- and inf-preserving. Thus, v ∈ V . □

Continuation of the proof to Lemma 4. We prove (vi). Using Assumption 2,

definition of V , and Lemma 4, one can show that F is a Carathéodory function in (t, a),

i.e., measurable in t and continuous in a. Hence, by Assumption 1 and Measurable

Maximum Theorem (Theorem 18.19 in Aliprantis and Border, 2006) the correspondence

Γ(t, µ; v,Φ) is measurable in t, hence, weakly measurable.9 For each j = 1, 2, . . . , k,

the function πj(t) := maxa∈Γ(t,µ;v,Φ) aj is measurable (again, by Measurable Maximum

Theorem). Thus, t → γ(t, µ,Φ; v) =
(
π1(t), π2(t), . . . , πk(t)

)
is measurable. □

Proof of Lemma 8. Suppose that f : T × A 7→ R belongs to the space of bounded

and continuous function C(T × A). Clearly, we have (1/N)f
(
ξN(ω), ηN(ω)

)
→ 0, for all

ω ∈ Ω. By the standard Kolmogorov Law of Large Numbers Theorem, we obtain

lim
N→∞

1

N − 1

∑
l ̸=j

f
(
T̃l, σn(T̃l)

)
=

∫
T

f
(
t, σn(t)

)
τn(dt) =

∫
T×A

f(t, a)(τn ⋆ σn)(dt× da),

P-almost surely. Consequently, for P-almost every ω ∈ Ω,

lim
N→∞

∫
T×A

f(t, a)µ̂N
n

(
(T̃−j, ξ

N), ηN
)

=

∫
T×A

f(t, a)(τn ⋆ σn)(dt× da). (2)

Let F be a countable, dense set in C(T × A). Let Ω̃ ⊆ Ω be such that any element

of F obeys (2). Then, P(Ω̃) = 1. We claim that (2) holds for any f ∈ C(T × A)

whenever ω ∈ Ω̃. Take any ϵ > 0. Since F is dense in C(T × A), take f0 ∈ F such that

∥f − f0∥∞ < ϵ
3
. Then,

∫
T×A

|f(t, a) − f0(t, a)|µ̂N
n

(
(T̃−j, ξ

N), ηN
)
(dt × da) ≤ ϵ

3
as well as

9See, e.g., Lemma 18.2 in Aliprantis and Border (2006).
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∫
T×A

|f(t, a) − f0(t, a)|(τn ⋆ σn)(dt× da) ≤ ϵ
3
. This implies∣∣∣∣∫

T×A

f(t, a)µ̂N
n

(
(T̃−j, ξ

N), ηN
)
(dt× da) −

∫
T×A

f(t, a)(τn ⋆ σn)(dt× da)

∣∣∣∣
≤

∫
T×A

|f(t, a) − f0(t, a)|µ̂N
n

(
(T̃−j, ξ

N), ηN
)
(dt× da)

+

∫
T×A

|f(t, a) − f0(t, a)|(τn ⋆ σn)(dt× da)

+

∣∣∣∣∫
T×A

f0(t, a)µ̂N
n

(
(T̃−j, ξ

N), ηN
)
(dt× da) −

∫
T×A

f0(t, a)(τn ⋆ σn)(dt× da)

∣∣∣∣ ≤
2

3
ϵ +

∣∣∣∣∫
T×A

f0(t, a)µ̂N
n

(
(T̃−j, ξ

N), ηN
)
(dt× da) −

∫
T×A

f0(t, a)(τn ⋆ σn)(dt× da)

∣∣∣∣ . (3)

Since ω ∈ Ω̃, there exists an integer N0 such that, for any N > N0,∣∣∣∣∫
T×A

f0(t, a)µ̂N
n ((T̃−j, ξ

N), ηN)(dt× da) −
∫
T×A

f0(t, a)τn ⋆ σn(dt× da)

∣∣∣∣ <
ϵ

3
. (4)

Combining (3) and (4), for N > N0, we have∣∣∣∣∫
T×A

f(t, a)µ̂N
n ((T̃−j, ξ

N), ηN)(dt× da) −
∫
T×A

f(t, a)τn ⋆ σn(dt× da)

∣∣∣∣ < ϵ. (5)

Since ϵ > 0, the (5) implies that (2) holds for f and ω ∈ Ω̃. Given that f ∈ C(T × A) is

arbitrary and P(Ω̃) = 1, we have µ̂N
n

(
(T̃−j, ξ

N), ηN
)
→ (τn ⋆ σn), almost surely. □

Recall that ṽN1 (t) := supπ∈Σ R(σ−j, π)(t). Then, the Bellman equation for optimal value

ṽNn , updated for any n ∈ N, take the form of

ṽNn (t) = max
a∈Ã(t,τn)

{
(1 − β)rNn (t, a) + β

∫
T

ṽNn+1(t
′)qNn (ds′|t, a)

}
. (6)

Let C be the set of continuous real-valued functions on T , uniformly bounded by r̄, which

is a closed subset of a Banach space. The metric in product space C := C∞ is embedded

in the natural Banach space the following norm: For v = (vn)n∈N, define

∥v∥ζ :=
∞∑
n=1

1

ζn−1
sup
t∈T

|vn(t)|,

where ζ ∈ (0, 1/β) is a fixed value. Clearly, vN → v in ∥ · ∥ζ if and only if vNn → vn, for

any n ∈ N. Let v ∈ C, t ∈ T , and BN(v)(t) :=
(
BN

n (v)(t)
)
n∈N where

BN
n (v)(t) := max

a∈Ã(t,τn)

{
(1 − β)rNn (t, a) + β

∫
T

vn+1(t
′)qNn (dt′|t, a)

}
.
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Similarly, define BN(v)(t) :=
(
BN
n (v)(t)

)
n∈N where

BN
n (v)(t) := (1 − β)rNn

(
t, σn(t)

)
+ β

∫
T

vn+1(t
′)qNn

(
dt′|t, σn(t)

)
.

For v ∈ C, let B∞(v)(t) := (B∞
n (v)(t))n∈N where

B∞
n (v) := max

a∈Ã

{
(1 − β)rn(t, a) + β

∫
T

vn+1(t
′)qn(dt′|t, a)

}
,

where rn(t, a) := r(t, a, τn ⋆ σn) and qn(·|t, a) := q(·|t, a, τn ⋆ σn), for (t, a) ∈ Gr
(
Ã(·, τn)

)
.

Similarly define B∞(v)(t) :=
(
B∞
n (v)(t)

)
n∈N where

B∞
n (v)(t)′ := (1 − β)rn

(
t, σn(t)

)
+ β

∫
T

vn+1(t
′)qn

(
dt′|t, σn(t)

)
.

Now we prove basic properties of BN and B∞.

Lemma C.1. Let σ be a Borel measurable function. Then,

(i) mappings BN ,BN
n , B

∞, and B∞
n map C into itself;

(ii) BN , BN
n , B

∞, and BN
n are βζ-contraction mappings on C;

(iii) if vN → v in C, then BN(vN) → B∞(v) and BN(vN) → B∞(v) in C;

(iv) we have ∥ṽN − ṽ∞∥∞ → 0, where ṽN , ṽ∞ in C is a fixed point of BN , B∞;

(v) we have ∥v̌N − v̌∞∥∞ → 0, where v̌N , v̌∞ in C is a fixed point of BN , B∞.

Proof. In order to prove (i), take any v ∈ C. Given Assumptions 6, for any n and

N , the following functions ΠN
n (t, a, v) = (1 − β)rNn (t, a) + β

∫
T
vn+1(t

′)qNn (dt′|t, a) and

Π∞
n (t, a, v) = (1− β)rn(t, a) + β

∫
T
vn+1(t

′)qn(dt′|t, a), are both continuous in (t, a). Since

BN
n (v)(t) = maxa∈Ã(t,τn)

ΠN
n (t, a, v) and B∞

n (v)(t) = maxa∈Ã(t,τn)
Π∞

n (t, a, v), statement (i)

follows immediately from Berge Maximum Theorem. We show (ii). It is routine to verify

∥BN
n (v) − BN

n (w)∥∞ ≤ β||vn+1 − wn+1||∞, for v, w ∈ C. By dividing both sides by ζn−1

and summing over n, we obtain

∥BN
n (v) −BN

n (w)∥ζ =
∞∑
n=1

∥BN
n (v) −BN

n (w)∥∞
ζn−1

≤ βζ
∞∑
n=1

∥vn − wn∥∞ = βζ∥vn − wn∥∞.

An analogous argument can be applied to prove the property for B∞. In order to show

(iii), suppose that vN → v in (C, || · ||∞) and (tN , aN) → (t, a), for (tN , aN) ∈ Ã(tN , τn).
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We claim that ΠN
n (tN , aN , vN) → Π∞

n (t, a, v). By Lemma 8and Assumption 6 we have that

rNn (tN , aN) → rn(t, a) and qNn (·|tN , aN) → qn(·|t, a). This proves the claim. Furthermore,

by (i), there is tN such that

sup
t∈T

|BN
n (vN)(t) −B∞

n (v)(t)| = ∥BN
n (vN)(tN) −B∞

n (v)(tN)∥.

Without loss of generality suppose that tN → t. Combining the definition of rn and

qn, Lemma 8, and the above claim, it follows that the right hand-side above tends to 0.

Hence, ∥BN(vN) −B∞(v∞)∥ζ → 0. Finally, to prove (iv), observe that

∥ṽN − ṽ∞∥κ = ∥BN(ṽN) −B∞(ṽ∞)∥ζ

≤ ∥BN(ṽN) −BN(ṽ∞)∥ζ + ∥BN(ṽ∞) −B∞(ṽ∞)∥ζ

≤ βζ||ṽN − ṽ∞||ζ + ||BN(ṽ∞) −B∞(ṽ∞)||ζ ,

where the last inequality is by (ii). Thus, ∥ṽN − ṽ∞∥κ ≤ ∥BN(ṽ∞)−B∞(ṽ∞)∥ζ/(1− βζ).

To finish the proof, we only take N → ∞, since by (iii) the right hand-side above tends

to 0. The proof of (v) is analogous to (iv).

Lemma C.2. Consider MDP, where (τn)n∈N and (σn)n∈N are implied by sequences of

distribution on types-policies for some MSDE (µ∗,Φ∗). Then, the sequences of value

functions v̄ for (µ∗,Φ∗) is a common fixed point of B∞ and B∞. As a result, v̄ = ṽ∞ = v̌∞.

Proof. By Lemma C.1, it follows that B∞ and B∞ are both contractions on C. Hence, we

only need to show v̄ is the fixed point of B∞ and B∞. By definition of v̄, v∗, µn, and τn,

for any t ∈ T , we have v̄n(t) = v∗(t, τn,Φ
∗) and

v̄n(t) = max
a∈Ã(t,τn)

{
(1 − β)r(t, a, µn) + β

∫
T

v∗(t′, µn+1,Φ
∗)q(dt′|t, a, µn)

}
= max

a∈Ã(t,τn)

{
(1 − β)r(t, a, µn) + β

∫
T

v̄n+1(t
′)q(dt′|t, a, µn)

}
= max

a∈Ã(t,τn)

{
(1 − β)r(t, a, τn ⋆ σn) + β

∫
T

v̄n+1(t
′)q(dt′|t, a, τn ⋆ σn)

}
= B∞

n (v̄n+1)(t).

Hence v̄ = B∞(v̄) and by uniqueness of the fixed point of B∞, v̄ = ṽ∞. By the same

argument we obtain v̄ = B∞(v̄), and v̄ = v̌.
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Proof of Theorem 4. Let ϵ > 0 and σ = (σn)n∈N be a sequential policy function

associated with (µ∗,Φ∗). If player j unilaterally deviates from σ using π then, for any

t ∈ T , we have RN((σ)−j, π)(t) − v̌N1 (t) ≤ ṽN1 (tj1) − v̌N1 (tj1) ≤ ∥ṽN1 − v̌N1 ∥∞. By Lemma

C.1, ṽN1 → v∞1 and v̌N1 → v̌∞1 . Since the policy is σ = σ∗ and the initial state is τ1 = τ ∗,

then v̌∞1 = v∞, by Lemma C.2. Thus, for large enough N , ∥ṽN1 − v̌N1 ∥∞ < ϵ. □
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Hoover, D. and J. Keisler (1984): “Adapted probability distributions,”Transactions of the American
Mathematical Society, 286, 159–201.

Keisler, H. J. and Y. Sun (2009): “Why saturated probability spaces are necessary,” Advances in
Mathematics, 221, 1584 – 1607.

Maharam, D. (1942): “On homogeneous measure algebra,” Proceedings of the N.A.S., 28, 108–111.

Podczeck, K. (2009): “On purification of measure valued maps,” Economic Theory, 38, 399–418.

——— (2010): “On existence of rich Fubini extensions,” Economic Theory, 45, 1–22.

Sun, Y. (2006): “The exact law of large numbers via Fubini extension and characterization of insurable
risks,” Journal of Economic Theory, 126, 31–69.

11


	Preliminaries
	Fubini extensions and the law of large numbers
	Lattices, chains, and fixed points

	Auxiliary results
	Omitted proofs

