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Abstract We show in this paper that the class of Lipschitz functions provides a suit-
able framework for the generalization of classical envelope theorems for a broad class
of constrained programs relevant to economic models, in which nonconvexities play a
key role, andwhere the primitivesmay not be continuously differentiable.We give suf-
ficient conditions for the value function of a Lipschitz program to inherit the Lipschitz
property and obtain bounds for its upper and lower directional Dini derivatives. With
strengthened assumptions we derive sufficient conditions for the directional differen-
tiability, Clarke regularity, and differentiability of the value function, thus obtaining
a collection of generalized envelope theorems encompassing many existing results
in the literature. Some of our findings are then applied to decision models with dis-
crete choices, to dynamic programming with and without concavity, to the problem
of existence and characterization of Markov equilibrium in dynamic economies with
nonconvexities, and to show the existence of monotone controls in constrained lattice
programming problems.
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1 Introduction

Envelope theorems for constrained optimization problems have been an important tool
for both microeconomic and macroeconomic analyses. In its standard or “classical”
form, an envelope theorem is simply an equality between the derivative of the value
function and the derivative of the objective evaluated at the optimum, ignoring the
indirect effects due to changes in the optimal solution. In once continuously differ-
entiable (“smooth” hereafter) and convex programs, envelopes are typically standard
derivatives giving precise information about the rate of growth of the value function
in all directions at a given point and are essential for comparative statics in many
economic models.

Programs with nonsmooth or nonconvex objectives and constraints are, however,
very common in economics, appearing, for instance, in dynamicgrowthmodels, in con-
strained lattice programming problems, in incentive constrained dynamic programs,
and in “bi-level”/Stackelberg games. In the absence of smoothness and convexity, one
cannot expect envelopes to be simple derivatives, since Lagrange multipliers may not
be unique and traditional derivatives (or even subgradients of convex analysis) may
not be defined. In these instances, classical envelope theorems are usually of little
help.

Nevertheless, generalizations of the classical envelope theorem have been derived
for economic models represented by nonconvex or nonsmooth programs. Amir et
al. [1], for instance, gave sufficient conditions for the Gâteaux differentiability of the
value function in a large class of nonconvex growthmodels. Bonnisseau and LeVan [2]
developed some fundamental results on the subdifferentiability of the value function
for convex, but not necessarily smooth programs, and Askri and LeVan [3] pioneered
the use of Clarke gradient to prove the differentiability of the value function in eco-
nomic models with continuous- and compact-valued choice domains under interiority
of solutions. Milgrom and Segal [4] derived various results for unconstrained Gâteaux
differentiable programs, subsequently extended to convex and smooth programs, and,
more recently, Rincon-Zapatero and Santos [5] proved the continuous differentiability
of the value function in smooth concave dynamic programming without interiority of
solutions.

This variety of results highlights the need for a comprehensive and systematic way
of deriving generalized envelope theorems for nonconvex and/or nonsmooth programs.
An important motivation for this paper is to show that the class of Lipschitz functions
provides an environment well suited for the generalization of classical envelope theo-
rems and for the unification of existing findings in the economic literature. We extend
the results of Morand et al. [6] to settings, in which both constraints and objectives
are not necessarily smooth or concave, but at least Lipschitz, and put special empha-
sis on Clarke regularity. Our paper seeks to contribute to the theoretical literature on
nonsmooth optimization with illustrations in dynamic economic models.
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Generically not everywhere differentiable, Lipschitz functions have some very
important features. First, the Lipschitz property is a verifiable hypothesis satisfied
in a wide variety of settings, in particular in the presence of convexity or continuous
differentiability. Second, Lipschitz functions are at the core of a well-developed theory
of differentiability extending that of convex functions (see Clarke [7]) and as such have
played an important role in nonexpected utility (see Chatterjee and Krishna [8]) and
in stochastic dynamic programming without concavity (see Maroto and Moran [9]).
Lipschitz functions on a compact domain are also absolutely continuous and therefore
equal to the integral of their almost everywhere derivative, a property exploited, for
instance, byMilgrom and Segal [4]. Finally, the set of (upper) Clarke regular Lipschitz
functions should be of particular interest to economists since it contains all convex
functions.

We demonstrate, in Sect. 2 of this paper, that the Lipschitz property is preserved by
maximization under relatively weak hypothesis. One of these hypotheses is a nons-
mooth constraint qualification related to the work of Hiriart Urruty [10] and Auslender
[11] and easily checked inmany applications. The other, taken from thework of Clarke
[7], imposes restrictions on the choice domain and the objective, which are satisfied
under some very general conditions in many economic models.

Having established that the value function is Lipschitz, in Sect. 3 of the paper
we give lower and upper bound estimates of its Dini derivatives, a result useful in
computational work and for proving the absolute continuity of the value function (a
critical step in the proof of its supermodularity in a large class of models, as shown
in Sect. 4). The rest of Sect. 3 consists in narrowing these bounds to sharpen the
characterization of the rates of growth of the value function in specific directions.
Gâteaux differentiability is the next step, since it permits comparative statics in all
directions at a specific point, followed by Clarke regularity (a step short of continuous
differentiability), which is shown to be preserved under maximization under some
conditions. Because continuously differentiable functions are necessarily Lipschitz
and, both upper and lower Clarke regular, while convex functions are upper Clarke
regular, classical envelope theorems are just special cases of our more general results.

In Sect. 4, our results are applied to dynamic programmingwith andwithout concav-
ity, to decision models with discrete choices, and to a proof of existence of equilibrium
in a large class of dynamic models with nonconvexities and nonsmooth primitives.

2 Lipschitz Programs

Since neither the set of convex functions nor the set of continuously differentiable
functions are best suited for the study of economic models with nonconvexities or
nonsmooth primitives, we focus on the larger set of Lipschitz continuous real-valued
functions and consider Lipschitz programs of the form:

max
a∈D(s)

f (a, s), (1)

in which f : A × S → R is the objective function and D : S ⇒ A is the feasible
correspondence defined as:

123



J Optim Theory Appl

D(s) = {a : gi (a, s) ≤ 0, i = 1, . . . , p and h j (a, s) = 0, j = 1, . . . , q},
where gi : A × S → R, i = 1, . . . , p, and h j : A × S → R, j = 1, . . . , n.

The choice set A and the parameter space S are both open subsets of Rn and R
m ,

respectively, and functions f , gi and h j are at first only assumed to be Lipschitz at
every (a, s) ∈ A×S. Note that the continuity of gi and h j implies that the feasible cor-
respondence D is closed at any s. When all functions are continuously differentiable,
we refer to program (1) as a smooth program.1

Function V : S → R, defined as V (s) = maxa∈D(s) f (a, s), is the value
function, and A∗ : S ⇒ A is the optimal solution correspondence, defined as
A∗(s) = argmaxa∈D(s) f (a, s). The Lagrangian associated with the above program
is:

L(a, s, λ, μ) = f (a, s) − λg(a, s) − μh(a, s),

where λ and μ are vectors in Rp and Rq , respectively. If A is closed, then the abstract
constraint a ∈ A induces an additional term in the Lagrangian (see, for instance,
Clarke [7], Chapter 6).

2.1 Constraint Qualifications

We first recall the definition of a Karush–Kuhn–Tucker (KKT) point, which requires
the existence of a vector of multipliers satisfying a specific “multiplier rule” stated in
terms of Clarke gradients.

Definition 2.1 Given s ∈ S, a ∈ D(s) is a KKT point of Program (1), if there exists
a vector (λ, μ) ∈ R

p
+ × R

q such that:

0 ∈ ∂a

⎛
⎝ f −

p∑
i=1

λi gi −
q∑
j=1

μ j h j

⎞
⎠ (a, s)

and λi gi (a, s) = 0 for all i = 1, . . . , p.

Denoting by K (a, s) the closed, convex, but possibly empty set of vectors (λ, μ)

satisfying the above “multiplier rule” at (a, s), one role of a constraint qualification
(CQ) is to eliminate the trivial cases in which K (a, s) is empty. Alternatively, a CQ
can be seen as a set of sufficient conditions for the existence of nontrivial Fritz-Jones
multipliers.

2.1.1 Smooth Programs

A standard CQ for smooth programs is the Mangasarian–Fromovitz CQ (hereafter,
denotedbyMFCQ),whichwhen satisfied implies the existenceof a directionbelonging

1 We refer the reader to Appendices for a brief summary of the properties of correspondences and of
Lipschitz functions.
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to both the cone of inward directions of active inequality constraints and the set of
tangent directions of equality constraints.2

Gauvin [12] proved in smooth programs that the MFCQ at a∗(s) ∈ A∗(s) is equiv-
alent to the compactness of K (a∗(s), s). This result was sharpened by Kyparisis [13],
who showed that the strictMFCQ, a slightly less general condition thanMFCQ, is both
necessary and sufficient for the set K (a∗(s), s) to be a singleton in smooth programs
(see also Bonnans and Shapiro [14]) for each a∗(s) ∈ A∗(s).

Both CQs, the latter treating active inequality constraints for which multipliers are
strictly positive (“binding constraints”) as equality constraints, are stated next.

Definition 2.2 The MFCQ is satisfied at a∗(s) ∈ A∗(s) if there exists y ∈ R
n such

that:

∇agi (a
∗(s), s) · y < 0, i ∈ I (a∗(s), s),

∇ah j (a
∗(s), s) · y = 0 j = 1, . . . , q,

where I (a∗(s), s) is the set of indexes of the active inequality constraints (those for
which the constraints, gi (a∗(s), s) = 0), and the matrix ∇ah(a∗(s), s) has full rank.
The strict Mangasarian–Fromovitz constraint qualification (SMFCQ) is satisfied at
optimal point a∗(s) ∈ A∗(s) if there exists y ∈ R

n such that:

∇agi (a
∗(s), s) · y < 0, i ∈ Is(a

∗(s), s)
∇agi (a

∗(s), s) · y = 0, i ∈ Ib(a
∗(s), s)

∇ah j (a
∗(s), s) · y = 0 j = 1, . . . , q,

where Is(a∗(s), s) = {i ∈ I (a∗(s), s), λi = 0}, Ib(a∗(s), s) = {i ∈ I (a∗(s), s), λi >

0}, and the vectors ∇agi (a∗(s), s), i ∈ Ib(a∗(s), s), ∇ah j (a∗(s), s), j = 1, . . . , q,
are linearly independent.

2.1.2 Lipschitz Programs

Classical gradients generically do not exist for Lipschitz functions, so we rely on a
generalization of the MFCQ (referred to as the “generalized MFCQ,” or GMFCQ)
introduced by Hiriart Urruty [10] and stated in terms of Clarke gradients. We denote
by g(a∗(s), s) the vector of active inequality constraints at a∗(s) ( g : A × S → R

p,
where p = Card(I (a∗(s), s))).

Definition 2.3 The GMFCQ is satisfied at a∗(s) ∈ A∗(s) if there exists y ∈ R
n such

that:

∀(γ, υ) ∈ ∂a(g, h)(a∗(s), s), γ · y < 0 and υ · y = 0

and ∂ah(a∗(s), s) is of maximal rank.

2 Such geometrical feature is critical to permit some form of sensitivity analysis in parameterized opti-
mization problems and points at another important role of CQs.
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We note Hiriart Urruty [10] proved that the GMFCQ at a∗(s) ∈ A∗(s) implies the
nonemptiness of K (a∗(s), s), as well as:

∂ag(a
∗(s), s) ⊂

∏
i∈I (a∗(s),s)

∂agi (a
∗(s), s).

So this version of the GMFCQ is slightly more general than that used in Auslender
[11].

2.2 Lipschitz Value Functions

The Lipschitz properties of the primitives of program (1) are, of course, not sufficient
for the value function V to even be continuous. Additional restrictions are therefore
needed to ensure that V is Lipschitz, so we adopt the following general hypothesis
made in Clarke [7] (Hypothesis 6.5.1, page 241).

Criterion 2.1 (Clarke’s hypothesis) V (s) is finite, and there exists a compact set
� and ε0 > 0 such that for all s′ ∈ ε0B(s) for which V (s′) ≥ V (s) − ε0, and
A∗(s′) ∩ � �= ∅.
Theorem 2.1 If the GMFCQ holds at any a∗(s) ∈ A∗(s), and Clarke’s hypothesis is
satisfied, then V is Lipschitz and:

∂V (s) ⊂ cl conv

⎧⎨
⎩

⋃
a∗(s)∈A∗(s)

⋃
(λ,μ)∈K ∗(a∗

n (s),s)

∂s( f − λg − μh)(a∗(s), s)

⎫⎬
⎭ .

Moreover, if the sequence {sn} converges to s, and if a∗
n ∈ A∗(sn) ∩ �, then there is a

subsequence {a∗
n } that converges to a∗ ∈ A∗(s).

Proof The Lipschitz property of V and the formula for the generalized gradient follow
directly from Clarke [7] (Corollary 1, page 242). By continuity of V at s, ∃δ such that
sn ∈ δB(s) ∩ ε0B(s) implies V (sn) ≥ V (s) − ε0; hence, by Clarke’s hypothesis
A∗(sn) ∩ � �= ∅ . Any sequence {a∗

n} with a∗
n ∈ A∗(sn) ∩ � is in the compact � and

therefore contains a subsequence converging to some a∗.Now, D is closed at s; hence,
a∗ ∈ D(s). By the continuity of V and f, V (sn) = f (an, sn) → f (a, s) = V (s);
hence, a∗ ∈ A∗(s) ∩ �. ��

Clarke’s hypothesis is not expressed in terms of primitives and therefore cannot
be immediately checked. Nevertheless, it is easily shown to be satisfied if any of the
following three conditions is satisfied3:

(a) Clarke’s growth condition (Clarke [7]): ∀r ∈ R, {(a′, s′) ∈ A× S, f (a′, s′) ≥ r}
is compact;

3 A fourth condition, in the form of a mild compactness restriction, is discussed in the next section of this
paper.
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(b) Inf-compactness condition (Bonnans and Shapiro [14]): There exist r ∈ R and
a compact set 	 ⊂ A such that for every s′ in a neighborhood of s the set
{a′ ∈ D(s′), f (a′, s′) ≥ r} is nonempty and contained in 	;

(c) Uniform compactness condition (Gauvin and Dubeau [15]): There exists a neigh-
borhood S′ of s such that cl [∪s′∈S′ D(s)] is compact.

It is important to note that, when combined with the GMFCQ, any one of the above
conditions implies a very powerful result analogous to Berge’s maximum theorem:
The value function is Lipschitz, and the set of optimal solutions A∗(s) is upper hemi-
continuous; the latter property is very important since it guarantees that as sn converges
to s, the maxima of f (., sn) become arbitrarily close to some of the maxima of f (., s).

Proposition 2.1 If the GMFCQ holds at any a∗(s) ∈ A∗(s), and if any of the condi-
tions (a), (b), or (c) above is satisfied, then the hypothesis of Theorem 2.1 holds and
the optimal solution correspondence A∗ is upper hemicontinuous at s.

Proof We prove the upper hemicontinuity independently for each condition:

(a) Given any sn → s and any sequence {an} such that an ∈ A∗(sn) ⊂ D(sn), by
continuity of V , V (sn) = f (an, sn) converges to V (s). As a result, ∀ε′ > 0 there
exists N such that ∀n ≥ N , f (an, sn) ≥ V (s) − ε′. The sequence {(an, sn)}n≥N

belongs to the (compact, by hypothesis) set {(a′, s′) ∈ A × S, f (a′, s′) ≥
V (s) − ε′} and therefore has a subsequence converging to (a, s) for some a. By
continuity of f , f (an, sn) = V (sn) converges to f (a, s); hence, f (a, s) = V (s).
Finally, since D is closed at s, necessarily a ∈ D(s). Thus, a ∈ A∗(s).

(b) By the inf-compactness condition, ∃r such that As = {a′ ∈ D(s′), f (a′, s′) ≥
r} is nonempty for all s′ ∈ δB(s) and is included in a compact set 	. Thus,
there exists N such that ∀n ≥ N , an ∈ A∗(sn) ⊂ As ⊂ 	, and the sequence
{(an, sn)}n≥N has a convergent subsequence to (a, s). By continuity of V and f
V (sn) = f (an, sn) → f (a, s) = V (s) and since D is closed at s, the desired
result follows.

(c) Since V is continuous at s, the map L : s → {a, f (a, s) − V (s) ≥ 0} is closed
at s. Under the uniform compactness condition, since A∗(s) = L(s) ∩ D(s), the
correspondence A∗ : s → A∗(s) is the intersection of the closed mapping L
with the upper hemicontinuous (since closed and uniformly compact) mapping
D. Consider then sn → s and any an ∈ A∗(sn) = L(sn) ∩ D(sn). Since D is
upper hemicontinuous at s, there exists a subsequence of an converging to some
a ∈ D(s). Since L is closed at s, the limit a of the subsequence of an necessarily
belongs to L(s). Thus, a ∈ A∗(s) = L(s) ∩ D(s), which proves that A∗ is upper
hemicontinuous at s. ��

Note again that the continuity of V cannot come directly from Berge’s maximum
theorem since the feasible correspondence D is not necessarily continuous, even
though all constraints are continuous. For example, the correspondence D defined
as:

D(s) = {(x, y), x + y ≤ s and (s − 11)(10 − x) ≤ 0}

is not continuous at s = 11.
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3 Generalized Envelope Theorems

The conditions for the preservation of the Lipschitz property under maximization,
derived in the previous section, are shown below to be sufficient for the existence
of specific bounds for the Dini derivatives of the value function. After proving this
important result, we impose, in the rest of this section, additional restrictions on the
primitives (such as concavity, differentiability, Clarke regularity, continuous differen-
tiability) to derive sharper envelope theorems going beyond the simple existence of
bounds all the way to precise C1 envelopes.

3.1 A Central Result on Stability Bounds

Under the conditions of Theorem 2.1, the value function is Lipschitz and has Dini
derivatives. Specific bounds for these Dini derivatives are obtained as a consequence
of a result in Clarke [7], Corollary 4 (page 243) (see also Tarafdar [16] for an alternative
proof independent of Clarke’s results), and can be expressed in terms of the primitives.

Theorem 3.1 If the GMFCQ holds at any a∗(s) ∈ A∗(s), then under Criterion 2.1,
for any x ∈ R

m:

D+V (s; x) ≤ max
a∗(s)∈A∗(s)

(
sup

λ∈K (a∗(s),s)

(
max

θ∈∂s ( f −λg−μh)(a∗(s),s)
{θ · x}

))

and

max
a∗(s)∈A∗(s)

inf
λ∈K (a∗(s),s)

(
min

θ∈∂s ( f−λg−μh)(a∗(s),s)
{θ · x}

)
≤ D+V (s; x).

Proof Omitting the equality constraints to simplify the notations (since equality con-
straints are associated with another multiplier), the Lipschitz program (1) becomes:

−V (s) = min− f (a, s) s.t. g(a, s) ≤ 0

and is identical to the “modified program”:

−V (s) = min− f (a, a′) s.t. g(a, a′) ≤ 0 and − a′ + s = 0

with its associated Lagrangian4:

Lm((a, a′), s, λ, θ) = − f (a, a′) + λg(a, a′) + θ(−a′ + s).

The two programs have the same set of solutions, in the sense that a∗(s) ∈ A∗(s) if
and only if (a∗(s), s) ∈ A∗

m(s), and the same set of multipliers, i.e., λ ∈ K (a∗(s), s)
if and only if (λ, θ) ∈ Km(a∗(s), s).

4 The subscript m is used to identify objects relevant to the “modified program.”
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By Theorem 6.1.1 in Clarke [7], there exist λ ≥ 0 and θ such that:

λg(a∗(s), s) = 0 and 0 ∈ ∂(a,a′)L((a∗(s), s), s, λ, θ).

The latter condition implies the existence of (σa +λγa) ∈ ∂a(− f +λg)(a∗(s), s) and
of (σa′ + λγa′) ∈ ∂a′(− f + λg)(a∗(s), s) such that, for all (u, v):

0 = (σa + λγa)u + (σa′ + λγa′)v − θv.

As a result, necessarily:

σa + λγa = 0

and

θ = σa′ + λγa′ ∈ ∂a′(− f + λg)(a∗(s), s).

The assumptions of Corollary 4 in Clarke [7] are satisfied (in Clarke’s notations, if
the GMFCQ holds at each a∗(s) then M0(

∑
) = {0}, where ∑ = A∗(s)); hence,

D+(−V )(s; x) ≤ sup
(λ,θ)∈M1(a,s)

{θ · x} = sup
λ∈K (a∗(s),s)

sup
θ∈∂a′ (− f +λg)(a∗(s),s)

{θ · x}

and

D+(−V )(s; x) ≥ inf
a∗(s)∈A∗(s)

inf
λ∈K (a∗(s),s)

inf
θ∈∂s (− f +λg)(a∗(s),s)

{θ · x} .

Since D+(−V )(s; x) = −D+V (s; x) and that D+(−V )(s; x) = −D+V (s; x), we
obtain:

D+V (s; x) ≤ − inf
a∗(s)∈A∗(s)

inf
λ∈K (a∗(s),s)

inf
θ∈∂s (− f+λg)(a∗(s),s)

{θ · x}
= sup

a∗(s)∈A∗(s)
sup

λ∈K (a∗(s),s)
sup

θ∈∂s ( f−λg)(a∗(s),s)
{θ · x}

and

D+V (s; x) ≥ inf
λ∈K (a∗(s),s)

inf
θ∈∂s ( f −λg)(a∗(s),s)

{θ · x} .

Since a∗(s) in A∗(s) is arbitrary in the last inequality, the theorem is proven, noting that
both sets ∂s( f −λg)(a∗(s), s) and A∗(s) are compact sets so inf and sup, respectively,
become min and max. ��

Application Theorem 1 of Milgrom and Segal [4] is a direct consequence of this
result when applied to the unconstrained version of Program (1):

V (s) = sup
a∈A

f (a, s).
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In addition to giving precise information about the bounds for the rate of growth
of the value function at any point, the above result also suggests that further differen-
tiability properties of the value function may be derived by combining (i) a stronger
CQ (to get uniqueness of the Lagrange multiplier), (ii) continuous differentiability
hypothesis (for Clarke gradients to be singletons), and (iii) concavity assumptions (to
get a unique optimal solution).

3.2 Clarke Regularity

While the optimal value function is generally not everywhere differentiable, sharp
bounds or estimates of its rate of growth can be obtained by a directional analysis,
providing that additional regularity conditions beyond the Lipschitz structure of the
primitives are in place.

While we consider the traditional assumptions of concavity and differentiability
below, we first discuss the role of Clarke regularity, a property which has received
little attention in economic models. (Notable exceptions are Askri and LeVan [3]
and Bonnisseau and LeVan [2].) The importance of Clarke regularity stems from the
property that Clarke regular Lipschitz value functions have directional derivatives.
In addition, intuitively, upper Clarke regularity at x gives “local” information, as it
implies that the derivative in some direction d approximates the maximum rate of
growth of the value function in the direction d in a whole neighborhood of x .

3.2.1 Locally Relaxing the Constraints

We begin with Lipschitz programs satisfying a mild compactness condition implying
that constraints can be locally ignored in a neighborhood of a particular point s.

Criterion 3.1 There exist a compact set � ⊂ A and a compact neighborhood N (s)
of s such that ∀s′ ∈ N (s) ⊂ S, A∗(s′) ⊂ � ⊂ D(s′).

We show this above condition is sufficient for the upper Clarke regularity5 of the
objective to be preserved to the value function under the maximization operation,
noting in the process that Clarke’s hypothesis (Criterion 2.1) is easily satisfied.

Proposition 3.1 Under Criterion 3.1, if f is Lipschitz, then V is Lipschitz at s. Fur-
thermore, if f is upper Clarke regular at s for each a∗(s) ∈ D(s), then V is upper
Clarke regular at s and

V ′(s; x) = max
a∗(s)∈A∗(s)

fs(a
∗(s), s; x).

Proof V is continuous at s by Berge’s theorem of the maximum, since by hypothesis

V (s) = max
a∈�

f (a, s).

5 Lower Clarke regularity for minimization programs.
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Furthermore, Criterion 2.1 is satisfied by choosing any ε0 > 0 such that εoB(s) ⊂
N (s), so that A∗(s′) ⊂ � for any s′ ∈ εoB(s). V is therefore Lipschitz at s by
Theorem 2.1.

The upper Clarke regularity of f permits squeezing together the Dini bounds of
Theorem 3.1. Indeed, for all a∗(s) ∈ A∗(s)

lim inf
t↓0

V (s + t x) − V (s)

t
= lim inf

t↓0
f (a∗(s + t x), s + t x) − f (a∗(s), s)

t

≥ lim inf
t↓0

f (a∗(s), s + t x) − f (a∗(s), s)
t

= fs(a
∗(s), s; x),

where the last equality results from the Gâteaux differentiability of f in s for each
a∗(s). In addition,

lim sup
t↓0

V (s + t x) − V (s)

t
≤ max

a∗(s)∈A∗(s)
max

ς∈∂ f (a∗(s),s)
{ς · x}

= max
a∗(s)∈A∗(s)

f o(a∗(s), s; x)
= max

a∗(s)∈A∗(s)
fs(a

∗(s), s; x),

where the last equality follows from the upper Clarke regularity of f in s for each
a∗(s). Since upper and lower Dini’s coincide, V is Gâteaux differentiable and

V ′(s; x) = max
a∗(s)∈A∗(s)

fs(a
∗(s), s; x) = max

a∗(s)∈A∗(s)
f o(a∗(s), s; x).

By definition of the upper Clarke derivative, for a∗(s) ∈ A∗(s):

f o(a∗(s), s; x) = max
ξ∈∂s f (a∗(s),s)

{ξ · x}

and by Theorem 2.1:

∂V (s) ⊂ cl conv
{∪a∗(s)∈A∗(s)∂s f (a

∗(s), s)
} ;

thus,

max
ξ∈∂V (s)

{ξ · x} ≤ max
ξ∈cl conv{∪a∗(s)∈A∗(s)∂s f (a∗(s),s)} {ξ · x} ≤ max

a∗(s)∈A∗(s)
f o(a∗(s), s; x).

As a result,

V ′(s; x) ≤ V o(s; x) = max
ξ∈∂V (s)

{ξ · x}
≤ max

a∗(s)∈A∗(s)
f o(a∗(s), s; x) = V ′(s; x);

hence, V is upper Clarke regular at x . ��
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There are, however, economic models in which the objective is not necessarily
jointly Lipschitz in (a, s) (and possibly not even continuous in a for each s). Such is
the case, in particular, in deterministic dynamic programs where the value function V
is defined recursively through Bellman’s equation:

V (s) = max
a∈�

{U (a, s) + βV (a)} (2)

and for which Proposition 3.1 clearly does not apply. Nevertheless, it is possible to
strengthen some of the hypotheses on the objective to ensure the preservation of upper
Clarke regularity, as shown in the next result.

Proposition 3.2 Under Criterion 3.1, if the correspondence (a′, s′) ⇒ ∂s f (a′, s′) is
closed at every (a∗(s), s), and f is upper Clarke regular at s for each a∗(s) ∈ D(s),
then V is upper Clarke regular at s and

V ′(s; x) = max
a∗(s)∈A∗(s)

fs(a
∗(s), s; x).

Proof The Lipschitz condition of f at every (a, s) ∈ � × N (s) implies that f is
continuous in a for each s. The compactness of � and N (s) implies that f is globally
Lipschitz on � × N (s). In particular, there exists some K > 0 such that for all a ∈ �

and all (s′, s′′) in N (s) :
∣∣ f (a, s′′) − f (a, s′)

∣∣ ≤ K
∥∥s′ − s′′∥∥ .

The Proposition then follows from Theorem 2.8.2 in Clarke [7]. ��
ApplicationThis result is used byAskri andLeVan [3] to prove the upperClarke reg-

ularity of the value function V in Eq. (2) above for a large class of classical nonoptimal
dynamic growth models. In these models, the mild compactness hypothesis follows
from the hypothesis of interiority of solutions, together with the upper hemicontinuity
of the optimal solution correspondence (see Askri and LeVan [3] Lemma 3.1), and V
thus inherits the upper Clarke regularity of the utility function U .6

3.2.2 Constrained Programs

When constraints are active, multipliers (not necessarily unique) become nonzero and
stronger conditions on the primitives are needed to prove anything beyond theLipschitz
property for the value function.Wenext prove the value functionof aLipschitz program
with continuously differentiable objective and constraints is upper Clarke regular,
provided the SMFCQ holds (and hence, the Clarke gradients are singletons and the
multipliers are unique).

6 Proposition 3.2 in Askri and LeVan is incorrectly stated since its proof requires the (upper) Clarke
regularity ofU (not the differentiability) so that their Theorem 2.1 can be used to prove the regularity of V .

123



J Optim Theory Appl

Proposition 3.3 Under Criterion 2.1, if the SMFCQ holds at every optimal solution
a∗(s) ∈ A∗(s), and if the primitives are continuously differentiable in s, then V is
upper Clarke regular at s and

V o(s; x) = V ′(s; x) = max
a∗(s)∈A(s)

{
Ls(a

∗(s), s, λ, μ) · x} .

Proof Given the uniqueness of the multiplier under the SMFCQ, the Dini bounds in
Theorem 3.1 coincide; hence, V is Gâteaux differentiable with:

V ′(s; x) = max
a∗(s)∈A∗(s)

{Ls(a
∗(s), s, λ, μ) · x}.

Clearly, for all a∗(s) ∈ A∗(s) :

Ls(a
∗(s), s, λ, μ) · x ≤ max

a∗(s)∈A∗(s)
{Ls(a

∗(s), s, λ, μ) · x};

hence,

∀θ ∈ clconv

⎧⎨
⎩

⋃
a∗(s)∈A∗(s)

Ls(a
∗(s), s, λ, μ)

⎫⎬
⎭ , θ · x

≤ max
a∗(s)∈A∗(s)

{Ls(a
∗(s), s, λ, μ) · x}.

Recall that by Theorem 2.1:

∂V (s) ⊂ cl conv

⎧⎨
⎩

⋃
a∗(s)∈A∗(s)

Ls(a
∗(s), s, λ, μ)

⎫⎬
⎭ ;

therefore,

V o(s; x) = max
ξ∈∂V (s)

{ξ.x} ≤ max
a∗(s)∈A∗(s)

{Ls(a
∗(s), s, λ, μ) · x} = V ′(s; x),

which implies V ′(s; x) = V o(s; x). Hence, V is upper Clarke regular. ��

3.3 Concavity and Differentiability

Although lower Clarke regularity is not typically preserved under maximization, the
results concerning the preservation of concavity are well known. As any concave
function is lower Clarke regular, we combine concavity with upper Clarke regularity
of the objective to generate a large class of objectives for which the value function will
be continuously differentiable under Criterion 3.1. Our result is stated in the following
result:

123



J Optim Theory Appl

Proposition 3.4 Under Criterion 3.1, if f is concave in (a, s) and differentiable at s
for each a and if graphD is convex, then V is concave and continuously differentiable.

Proof f is concave in s, and thus lower Clarke regular, in addition to be differentiable
in s. It is therefore continuously differentiable in s (see Appendix) and therefore upper
Clarke regular. By Proposition 3.1 V inherits the upper Clarke regularity of f , but also
the concavity of f since graphD is convex. V is thus continuously differentiable. ��

Application This is the well-known result on the differentiability of the value func-
tion under interiority of solutions, generally obtained as a consequence of a theorem
of Benveniste and Scheinkman (see, for instance, Lucas and Prescott [18], Theorem
4.11).

In the presence of multiple Lagrange multipliers, an alternative to SMFCQ is to
postulate enough concavity in the primitives to “squeeze” the lower and upper Dini
bounds of Theorem 3.1 to obtain Gâteaux differentiability.

Proposition 3.5 Under Clarke’s hypothesis, if the GMFCQ holds at every a∗(s) ∈
A∗(s), and if the primitives are continuously differentiable in s, f and−g are concave,
and h is affine in a, then V is Gâteaux differentiable and

V ′(s; x) = max
a∗(s)∈A∗(s)

min
(λ,μ)∈K (a∗(s),s)

{
Ls(a

∗(s), s, λ, μ) · x} .

Proof By Theorem 3.1:

max
a∗(s)∈A∗(s)

min
λ∈K (a∗(s),s)

Ls(a
∗(s), s, λ, μ) · x ≤ D+V (s; x).

Imposing additional conditions on the primitive helps tighten the upper bound as
follows.

First, choose a sequence {tn} ↓ 0 such that:

DV+(s; x) = lim sup = lim
n→∞

V (s + tnx) − V (s)

tn

and consider the associated sequence {a∗(s + tnx)} with a∗(s + tnx) ∈ A∗(s + tnx)
for all n ∈ N. Any a∗ ∈ A∗(s) is a global maximum given the concavity assumptions.

By definition of the value function, for any a∗ ∈ A∗(s) and for any (λ, μ) ∈
K (a∗, s) and (λn, μn) ∈ K (a∗(s + tnx), s + tnx) :

V (s + tnx) − V (s)

tn
= L(a∗(s + tnx), s + tnx, λn, μn) − L(a∗, s, λ, μ)

tn
,

where (λn, μn) ∈ K (a∗(s + tnx), s + tnx).
By strong duality, (a∗

n(s + tnx), s + tnx, λn, μn) is a global saddle point of L;
therefore,

L(a∗(s + tnx), s + tnx, λn, μn) ≤ L(a∗(s + tnx), s + tnx, λ, μ)
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and

L(a∗(s + tnx), s, λ, μ) ≤ L(a∗, s, λ, μ).

Consequently, for any a∗ ∈ A∗(s) and for any (λ, μ) ∈ K (a∗, s) :
V (s + tnx) − V (s)

tn

≤ L(a∗(s + tnx), s + tnx, λ, μ) − L(a∗(s + tnx), s, λ, μ)

tn
≤ Ls(a

∗(s + tnx), s
′, λ, μ) · x

for some s′
n ∈ [s, s + tnx] by the mean value theorem. By assumption, Ls is upper

semicontinuous in (a, s). Hence, for any a∗ ∈ A∗(s) and (λ, μ) ∈ K (a∗, s):

lim
n→∞

V (s + tnx) − V (s)

t
≤ Ls(a

∗, s, λ, μ) · x;

therefore,

D+V (s; x)
≤ max

a∗(s)∈A∗(s)
min

(λ,μ)∈K (a∗(s),s)
Ls(a

∗(s), s, λ, μ) · x;

thus, D+V = D+V , and the result follows. ��
Application The above result can be seen as a generalization of some of the findings

of Milgrom and Segal [4]. In particular, Proposition 3.3 extends their Theorem 5
to constrained programs satisfying the SMFCQ, while Proposition 3.5 mirrors their
Corollary 5, but holds under a weaker CQ.

Finally, in the absence of equality constraints, we note that the hypothesis of joint
concavity, together with the continuous differentiability in s, implies if the SMFCQ
holds at every optimal solution, then the value function must be at least continuously
differentiable. Our result is thus related to the analysis of concave programs of Rincon-
Zapatero and Santos [5], although our constraint qualification is weaker than the linear
CQ used by these authors.

Proposition 3.6 Under Criterion 2.1, if the primitives are continuously differentiable
in (a, s) and the SMFCQ holds at all a∗(s) in A∗(s), and if f and −g are jointly
concave in (a, s) and h = 0, then V is continuously differentiable and

V ′(s) = Ls(a
∗(s), s, λ)

for any a∗(s) ∈ A∗(s).
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Proof Under the SMFCQ, and with continuously differentiable primitives, the multi-
plier is unique, and by Proposition 3.5, V is Gâteaux differentiable with:

V ′(s, x) = max
a∗(s)∈A∗(s)

{(
fs(a

∗(s), s) − λgs(a
∗(s), s)

) · x}

in which {λ} = K (a∗(s), s). In addition,

−V ′(s;−x) ≤ V ′(s; x).

The concavity of V (inherited from that of f and −g), together with its Gâteaux
differentiability, implies it is continuously differentiable, hence lower Clarke regular;
therefore,

V ′(s; x) = V−o(s; x) ≤ V o(s; x) = −V−o(s;−x) = −V ′(s; x).

As a result,

V o(s; x) = V−o(s; x);

that is,

max
a∗(s)∈A∗(s)

{(
fs(a

∗(s), s) − λgs(a
∗(s), s)

) · x}

= min
a∗(s)∈A∗(s)

{(
fs(a

∗(s), s) − λgs(a
∗(s), s)

) · x} ;

hence, V is continuously differentiable at s and

V ′(s) = fs(a
∗(s), s) − λgs(a

∗(s), s)

for any a∗(s) ∈ A∗(s) and {λ} = K (a∗(s), s). ��

We note that Proposition 3.6 does not require the set of optimal solutions to be a
singleton. Further, any optimal solution along with its associated unique multiplier
can be used to calculate the gradient of the value function.

4 Applications and Extensions

In this section, we showhow the general results derived above can be applied to various
economic models characterized by nonconvexities and/or nonsmooth objectives and
constraints.
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4.1 Optimization Problems with Discrete Choice Variables

We first illustrate the use of our results in a simple model with nonsmooth primi-
tives while also allowing for discrete choices. To apply our results, both objective and
constraints are only Lipschitz and discrete choice constraints are rewritten as equal-
ity constraints. The upside of this strategy is that equality constraints thus become
continuously differentiable; the downside is that they restrict the choice of directions
satisfying the CQ (since such direction must be in the set of tangent directions of
equality constraints).

Our results can be applied to a large class of models, but for clarity we focus on a
simple utility maximization problem in which a consumer, endowed with one unit of
time and e > 0 units of the consumption good, chooses jointly a level of consumption
c and whether to work or not (l = 1 or l = 0 ) and so as to maximize utility U (c, l).
FunctionU : R+ ×R+ −→ R is assumed to be continuous, increasing, and Lipschitz
at every point in the interior of its domain, and U (c, 1) > U (c, 0) for all c ≥ 0.
The consumption good is produced by a firm with production function F : R −→ R

assumed to be increasing, continuous, and Lipschitz at every point.
Associated with the consumer’s problem is the program:

V (e) = maxU (c, l)

subject to:

h(c, l) = l(1 − l) = 0

g1(e, (c, l)) = c − F(1 − l) − e ≤ 0

g2(e, (c, l) = −c ≤ 0.

The multiplier rule characterizing KKT points is:

0 ∈ ∂(c,l){U − λ1g1 − λ2g2 − μh}(e, (c∗, l∗))

so that:

λ1 − λ2 ∈ ∂cU (c∗, l∗)
μ

(
1 − 2l∗

) ∈ ∂lU (c∗, l∗) − λ1∂l F(1 − l∗),

together with the complementary slackness conditions:

λ1(c
∗ − F(1 − l∗) − e) = 0

λ2c
∗ = 0.

First, we note that Clarke’s hypothesis is satisfied because the choice domain D(e)
(a closed set) is included in the compact set [0, F(1)+ e]× [0, 1]; hence, the uniform
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compactness condition is trivially satisfied. Second, it is easy to verify that theGMFCQ
is satisfied at any solution (c∗, l∗). Indeed as:

∂(c,l)h = {(0, 1 − 2l∗)}
∂(c,l)g1 = {1} × −∂l F(1 − l∗)
∂(c,l)g2 = {(−1, 0)}

if c∗ = 0 (and thus λ1 = 0 and l∗ = 1) then any (y1, 0) with y1 > 0 satisfies
the GMFCQ, while if c∗ > 0 (hence λ2 = 0) any (y1, 0) with y1 < 0 satisfies the
GMFCQ. The following result is then a direct consequence of Theorem 3.1.

Proposition 4.1 V is Lipschitz at any e > 0 and

D+V (e; x) ≤ max
(c∗,l∗)∈A∗(e)

sup
λ1∈K ((c∗,l∗),e)

λ1

and

D+V (e; x) ≥ max
(c∗,l∗)∈A∗(e)

inf
λ1∈K ((c∗,l∗),e)

λ1 ≥ 0,

where λ1 = 0 if c∗ = 0 and λ1 ∈ ∂cU (c∗, l∗) if c∗ > 0.

We note that the SMFCQ can only be satisfied if none of the inequality constraints
are active, i.e., if 0 < c∗ < F(1 − l∗) + e. When that is the case, Proposition 3.3
implies that V is Gâteaux differentiable at any e > 0 since the primitives are trivially
continuously differentiable in e.

Alternatively, ifU is continuously differentiable in its first argument, then the mul-
tiplier is unique since λ1 = Uc(c∗, l∗) ≥ 0 if c∗ > 0, and V is Gâteaux differentiable
with:

V ′(e; x) = max
(c∗,l∗)∈A∗(e)

Uc(c
∗, l∗) if c∗ > 0.

4.2 Lipschitz Dynamic Programming

The quantitative property of Lipschitz continuity of the value function in optimization
programs is very important, at minimum for computational reasons, so a number of
researchers have produced sufficient condition for the preservation of the Lipschitz
property in maximization programs (see, for instance, Laraki and Sudderth [19] and
Hinderer [20]) expressed generally in terms of global Lipschitz conditions. We seek
here to weaken these conditions to just (local) Lipschitzness for recursive dynamic
programs common in the economic literature.

Consider the following generic recursive dynamic program (see, for instance, [18]):

Vk+1(s) = T (Vk)(s) = max
a∈D(s)

{ f (a, s) + βVk(a)}
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in which D(s) = {a ∈ A ⊂ R
n, g(a, s) ≤ 0}, s ∈ S ⊂ R

m and V0 = 0, with its
corresponding Lagrangian:

Lk+1(a, s) = f (a, s) + βVk(a) − λg(a, s)

and solution set A∗
k+1(s) = argmaxa∈D(s) { f (a, s) + βVk(a)}. Both functions f and

g are only assumed to be Lipschitz in (a, s), and 0 < β < 1.
Given V0 = 0, the following result is a direct consequence of a repeated application

of Theorem 2.1.

Proposition 4.2 If the GMFCQ is satisfied for all a∗
k+1(s) ∈ A∗

k+1(s) for each n,
then if Clarke’s hypothesis is satisfied (or under any of the conditions in Proposition
2.1) the sequence {Vk} is a sequence of Lipschitz functions, with Clarke gradients
satisfying:

∂Vk+1(s) ⊂ cl conv

⎧⎨
⎩

⋃
a∗
k+1(s)∈A∗

k+1(s)

⋃
λ∈K ∗(a∗(s),s)

∂s( f − λg)(a∗
k+1(s), s)

⎫⎬
⎭ .

Of course, whether or not the GMFCQ and Clarke’s hypothesis are satisfied will
depend on the specific problem considered. The GMFCQ is easier to satisfy, the
fewer the number of active constraints (it is trivially satisfied when all constraints are
inactive), while Clarke’s hypothesis is automatically satisfied if the choice domain is
uniformly bounded (as in bounded growth models).

It is well known that the sequence {Vk} of Lipschitz functions converges uniformly
to the unique continuous function V satisfying V = T (V ). Unfortunately, uniform
limits of sequences of locallyLipschitz functions are not necessarily locallyLipschitz,7

but it is nevertheless possible to prove that V is (at least) Lipschitz under variety of
cases.

One can, for instance, impose a global or uniform Lipschitz condition, as in Laraki
and Sudderth [19] or Hinderer [20] , in which case an upper bound for the Lipschitz
modulus of the value function can be derived. Alternatively, we illustrate the use of
our results in the growth model with nonconvex technology of Askri and LeVan [3]
in which the objective is only assumed to be upper Clarke regular and solutions are
interior.

4.2.1 Clarke Regular Dynamic Programming

Consider the growth model of Askri and LeVan [3] and the associated Bellman equa-
tion:

V (k0) = max
k1∈G(k0)

{U (k0, k1) + βV (k1)} .

7 The Weistrass approximation theorem asserts that any continuous functions, Lipschitz or not, may be
uniformly approximated by polynomials (which are Lipschitz).
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While the assumptions made in Askri and LeVan are sufficient to ensure that Crite-
rion 3.1 is fulfilled (as shown in their Lemma 3.1), we amend their results (Propositions
3.2, 3.3) to emphasize the importance of upper Clarke regularity.

First, we correct their Proposition 3.2 by noting that the critical assumption onU is
that of upper Clarke regularity in its first argument. Indeed, a careful reading of their
proof reveals that the upper Clarke regularity of V relies primarily on the upper Clarke
regularity ofU (and not, simply, its differentiability8), which is obtained through their
Theorem 2.1.

Second, we note that the addition of upper Clarke regularity of U in its second
argument is sufficient to prove their Proposition 3.3, namely that V is not just differ-
entiable, but once continuously differentiable at every point on the optimal path. In this
case, even though the primitives are not smooth, V has that property on the optimal
path. A crucial feature in this problem is the interiority of all optimal solutions, a
property guaranteed by assuming Criterion 3.1 just like in Askri and LeVan [3].

Proposition 4.3 If Criterion 3.1 holds and if U is upper Clarke regular in its first
argument, then V is upper Clarke regular at k0 > 0. Furthermore, if U is also upper
Clarke regular in its second argument, then V is continuously differentiable at every
point along the optimal path.

Proof The upper Clarke regularity of V follows from Proposition 3.2 .
Since all solutions are interior, and given that the directional derivatives of the

sum of two Clarke regular functions are additive by Clarke [7] (Theorem 2.9.8), the
first-order conditions for any directions d and −d are:

U ′
2(k0, k1; d) + βV ′(k1; d) ≤ 0

U ′
2(k0, k1;−d) + βV ′(k1;−d) ≤ 0.

Upper Clarke regularity implies that:

U 0
2 (k0, k1; d) + βV 0(k1; d) ≤ 0

U 0
2 (k0, k1;−d) + βV 0(k1;−d) ≤ 0;

hence, for ν ∈ ∂U2(k0, k1), ξ ∈ ∂V (k1) ,

max{ν · d} + β max{ξ · d} ≤ 0

max{ν · (−d)} + β max{ξ · (−d)} ≤ 0.

As a result, the last inequality simplifies to

min{ν · d} + β min{ξ · d} ≥ 0;

thus, necessarily, for all d ∈ R
n

min{ν · d} = max{ν · d}, min{ξ · d} = max{ξ · d}.

8 Differentiable functions need not be upper Clarke regular.
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This implies that the Clarke gradients ∂2U (k0, k1) and ∂V (k1) are both singleton for
any optimal k1, given k0 ; hence, V is once continuously differentiable at any optimal
point k1. ��

4.2.2 Concave Dynamic Programming

Much more (than just the Lipschitz property) can be established concerning the dif-
ferentiability properties of the value function in the presence of concavity, providing
the primitives are also assumed to be differentiable with respect to s. Concavity itself,
a feature of many economic models, is an important property since it is preserved
under pointwise limits and since concave functions are Lipschitz on the interior of
their domain.

The presence of multiple multipliers is of course a hindrance, but that too can be
set aside if one assumes that the SMFCQ holds.

Proposition 4.4 Assuming (i) f and g are Lipschitz and concave in (a, s) as well as
continuously differentiable in s, (ii) the derivatives fs and gs are upper semicontinuous
in a, (iii) the GMFCQ is satisfied at every optimal solution, and (iv) Criterion 2.1 is
satisfied, then the Lipschitz value function V is concave and Gâteaux differentiable
with:

V ′(s, x) = max
a∗(s)∈A∗(s)

min
λ∈K (a∗(s),s)

(
Fs(a

∗(s), s) − λgs(a
∗(s), s)

) · x .

If, in addition, the SMFCQ is satisfied at every optimal solution, then V is continuously
differentiable and

V ′(s) = fs(a
∗(s), s) − λa∗(s)gs(a

∗(s), s)

for any a∗(s) ∈ A∗(s) and λa∗(s) = K (a∗(s), s).

Proof V is concave, hence Lipschitz, and satisfies the Lipschitz program:

V (s) = max
a∈D(s)

{ f (a, s) + βV (a)}.

Under the MFCQ a direct application of Proposition 3.5 to this program implies that
V is Gâteaux differentiable with:

V ′(s, x) = max
a∗(s)∈A∗(s)

min
λ∈K (a∗(s),s)

(
fs(a

∗(s), s) − λgs(a
∗(s), s)

) · x,

but the existence of multiple Lagrange multipliers generically prevents V from being
continuously differentiable.

However, assuming next that the SMFCQ is satisfied at each optimal solution, the
multiplier set is a singleton and by Proposition 3.6:
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V ′(s) = fs(a
∗(s), s) − λgs(a

∗(s), s)

for any a∗(s) ∈ A∗(s) and λ ∈ K (a∗(s), s). ��
Our result on the continuous differentiability generalizes Benveniste and

Scheinkman [17] by allowing the inequality constraints to be active at the optimal
solution. The cost is a stronger constraint qualification (SMFCQ), although weaker
than the LICQ in Rincon-Zapatero and Santos [5].

4.3 Supermodularity of the Value Function in Recursive Dynamic Programs

The global convergence of monotone Markov processes is at the core of many results
concerning the long-run behavior of many recursive economic models or dynamical
systems. In stochastic dynamic optimization, the existence ofmonotone controls pretty
much ensures that the state follows a monotone Markov process, as clearly illustrated
in standard capital accumulation models (see, for instance, Hopenhayn and Prescott
[21] or Stokey et al. [18]).

In these models, as in many recursive dynamic economic models, monotone con-
trols are a consequence of the supermodularity of the value function. In Hopenhayn
and Prescott [21], this supermodularity follows from the application of a powerful
theorem of lattice theory on the preservation of supermodularity under maximization
(Theorem 2.7.6 in Topkis [22]), but is restricted to programs with sublattice-valued
choice domains. In the context of the standard classical growth model, this means that
practically all but Leontieff-type production functions are excluded. Alternatively, in
Mirman, Morand and Reffett [23], the proof of supermodularity relies on the differ-
entiability properties of the value function and requires the primitives to be smooth.

We propose to use a generalized envelope result to prove supermodularity without
relying on Topkis’ theorem and without assuming smooth primitives. To illustrate our
argument, we work with a deterministic dynamic growth model with nonconvexities
and prove the supermodularity of the value function under fairly general conditions.

4.3.1 Model and Definition of Recursive Equilibrium

We consider a class of models with a continuum of identical infinitely lived house-
holds/firms. Each household enters period t = {0, 1, 2, . . . } with an individual stock
of capital kt , and supplies inelastically one unit of time to firms. Common in the liter-
ature (e.g., Coleman [25], Greenwood and Huffman [26]), and consistent with more
recent work (e.g., Tanaka [24] Kamihigashi and Roy [27,28]), we adopt a “reduced-
form” production function F(k, n, K , N ), where k and n are, respectively, the firm’s
capital and labor inputs, while K and N are the average or per capita corresponding
quantities. Since n = N = 1 we use the notation f (k, K ) = F(k, 1, K , 1) and make
the following standard assumptions.

Assumption (i) There exists k̂ > 0 such that F(k̂, 1, k̂, 1) = k̂ and F(k, 1, k, 1) <

k , for all k > k̂, so we denote by K the interval [0, k̂]. Function F : K × [0, 1] ×
K × [0, 1] → R is continuous, increasing, concave in its first two arguments and
exhibits constant returns to scale in (k, n).
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Assumption (ii) u : K �→ R is increasing, continuous, and concave and satisfies
u(0) = 0.

We replace the usual Inada condition limc→0u′(c) → ∞ by the following assump-
tion:

Assumption (iii) For all M > 0, there exists x0 ∈ K, x0 > 0 such that ξ > M
for all ξ ∈ ∂u(x0).

As in Hopenhayn and Prescott, we also need a curvature condition requiring that
the degree of complementarity between private and aggregate per capita capital stocks
be high relative to the curvature of the utility function.

Assumption (iv) ∀k′ ≥ k, ∀K ′ ≥ K and ∀y ∈ [0, f (k, K )]:

u( f (k′, K ′) − y) − u( f (k, K ′) − y) ≥ u( f (k′, K ) − y) − u( f (k, K ) − y).

Note that the function u( f (k, .)−y) is Lipschitz at any K > 0 satisfying f (k, K )−
y > 0; hence, Assumption (iv) will be satisfied if, at points where u( f (k, .) − y) is
differentiable, u′( f (k, K ) − y) f1(k, K ) is increasing in K .

Given k0 = K0 > 0, a consumer seeks to maximize:

E0

{ ∞∑
i=0

β i u(ci )

}

subject to:

ct + kt+1 ≤ f (kt , Kt ) t = 0, 1, . . . .

In addition, the consumer uses the law ofmotion h to recursively compute the sequence
{Kt } of per capita capital stocks as Kt+1 = h(Kt ).

A recursive equilibrium is a particular law of motion h∗ ∈ B such that for all
k ∈ K:

h∗(k) ∈ Y ∗(k, K ; h) = arg sup
y∈�(k,K )

{u( f (k, K ) − y) + V (y, h(K ))}

and where

B = {h : K → K, 0 ≤ h(k) ≤ f (k, k), h usc and increasing}.

Exploiting the lattice structure generated by the pointwise partial order, we denote by
∨Y ∗ and ∧Y ∗ the greatest and least selections of Y ∗. Function V is the unique value
function satisfying Bellman’s equation:

V (k, K ) = sup
y∈�(k,K )

{u( f (k, K ) − y) + V (y, h(K ))},

where �(k, K ) = {y ∈ K, 0 ≤ y ≤ f (k, K )}.
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The proof of existence of equilibrium follows the argument in Mirman, Morand
and Reffett [32] (Theorems 6 and 9) which relies on the order-preserving properties
of a self-mapping on B defined by:

h → ∨Y ∗(k, k; h).

It requires V to be supermodular, a property which we establish next.

4.3.2 Proof of Supermodularity of the Value Function

Given V0 = 0 we prove by induction that each element of the sequence {Vn =
T (n)V0} is supermodular; V naturally inherits that property as the pointwise limit of
that sequence.

Fixing h ∈ B, and assuming that Vn is Lipschitz and supermodular, we consider
the Lipschitz program:

Vn+1(k, K ) = max
0≤y≤ f (k,K )

{u( f (k, K ) − y) + Vn(y, h(K ))}.

Given that h and f are increasing and that u is concave, the objective above has
increasing differences in (y; (k, K )).9 Since the choice correspondence [0, f (k, K )]
is strong set order ascending, the greatest and least selections ∨Y ∗

n+1 and ∧Y ∗
n+1 are

both increasing in (k, K ) by Theorems 2.8.1 and 2.8.3 in Topkis [22]. Note that by
the same argument both f − ∨Y ∗

n+1 and f − ∧Y ∗
n+1 are also increasing in (k, K ).

Inada conditions imply interiority of solutions (all multipliers are thus 0 ); hence,
by Theorem 3.1, Vn+1 is Lipschitz with:

max
y∗(k,K )∈Y ∗

n+1(k,K )

(
min

θ∈∂(u( f (k,K )−y∗(k,K )))
θ · x

)
≤ D+Vn+1(k, K ; x)

and

D+Vn+1(k, K ; x) ≤ max
y∗(k,K )∈Y ∗

n+1(k,K )

(
max

θ∈∂(u( f (k,K )−y∗(k,K ))
θ · x

)

in which the Dini derivatives are with respect to the first variable.
The concavity of u implies that if c′ > c then ∀(θ, θ ′) ∈ ∂u(c)×∂u(c′) necessarily

0 ≤ θ ′ ≤ θ. As a result, for any x > 0 :

max
y∗(k,K )∈Y ∗

n+1(k,K )

(
max

θ∈∂(u( f (k,K )−y∗(k,K ))
θ · x

)
≤ max

θ∈∂(u( f (k,K )−∧Y ∗
n+1(k,K ))

θ · x

9 Supermodularity and increasing differences are equivalent properties on R2.
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and also, given any k ∈ K with k > 0, ∀k ∈ [̂k, k] :

max
θ∈∂(u( f (k,K )−∧Y ∗

n+1(k,K ))
θ · x ≤ max

θ∈∂(u( f (k,K )−∧Y ∗
n+1(k,K ))

θ · x .

Thus, ∀k ∈ [̂k, k] and ∀x > 0:

0 ≤ D+Vn+1(k, K ; x)
≤ D+Vn+1(k, K ; x) ≤ max

θ∈∂(u( f (k,K )−∧Y ∗
n+1(k,K ))

θ · x,

which proves that the Dini derivatives of Vn+1 are uniformly bounded on any interval
[k, k̂] (a symmetric argument holds for the direction x < 0). As a result, the function
k → Vn+1(k, K ) is absolutely continuous on [k, k̂] for any 0 < k < k̂.

Such absolute continuity, together with the properties that Vn+1 is increasing
and continuous in its first argument, implies that Vn+1 is absolutely continuous on
K = [0, k̂] (see Problem 37 in Royden [29]). By the fundamental theorem of integral
calculus (Royden [29]), k → Vn+1(k, K ) is therefore almost everywhere differen-
tiable and, ∀k ∈ K :

Vn+1(k, K ) =
∫ k

0
V ′
n+1(s, K )ds. (3)

At the points where k → Vn+1(k, K ) is differentiable, by definition both Dini’s must
coincide; hence, for all s:

V ′
n+1(s, K ) = u′( f (s, K ) − ∧Y ∗

n+1(s, K )) f1(s, K ).

Finally, we note that for any K ′ > K , wherever the derivative exists:

V ′
n+1(s, K ) = u′( f (s, K ) − ∧Y ∗

n+1(s, K )) f1(s, K )

≤ u′( f (s, K ′) − ∧Y ∗
n+1(s, K

′)) f1(s, K ′) = V ′
n+1(s, K

′)

the inequality following from Assumption (iv) and the monotonicity of ∧Y ∗
n+1.

The above inequality, together with (3) prove the supermodularity of Vn+1. By
induction, the sequence {Vn}∞n=0 is a collection of supermodular functions in (k, K )

and its pointwise limit V inherits that property.
We note that the strategy of relying on a nonsmooth envelope can also be used to

derive sufficient conditions for the value function of a stochastic one sector growth
model with Lipschitz primitives to be supermodular and therefore to prove the exis-
tence of monotone controls. Based on this monotonicity, strong results about the
convergence of the state to an invariant distribution can then be derived.
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4.4 Normal Goods in the Consumer’s Problem via Minimax Dynamic Lattice
Programming

In our final application, we construct monotone comparative statics in a consumer’s
problem via aggregation. The construct is essentially a dynamic programming argu-
ment. That is, our strategy corresponds to solving the consumer’s problem in two
stages. In the first stage, given a (feasible) level of consumption for some good i , the
consumer maximizes utility over choices of all other goods. Then, in the second stage,
the consumer then chooses a level of consumption for good i.

We study the normality/comparative statics of the second-stage decision relative to
choosing good i . This aggregation procedure enables us apply Proposition 3.5 under
criterion 2.1 to show how envelope theorems can be used to prove the existence of
monotone controls in an important example of a constrained lattice programming prob-
lem (namely, provide sufficient conditions for the normality of consumption demand
for a single good in a vector of consumption decisions).

It is well known that standard lattice programming techniques in Euclidean orders
cannot be applied to the consumer’s problem to derive conditions for the normal-
ity of demand for a single good. (e.g., Antoniadou[30,31], Mirman and Ruble [32],
Quah [33]). For example, ordered changes in income do not induce strong set ordered
changes in the budget correspondence in the standardEuclidean lattices.10 To dealwith
this situation, researchers have changed the order structures on commodity spaces. In
some cases, these new partial orders induce lattice structure on commodity spaces
(e.g., Antoniadou [30,31] and Mirman and Ruble [32]). In other cases, the new orders
are not even generally partial orders, let alone lattices, but they are sufficient to infer
the existence of monotone comparative statics (e.g., the flexible set orders in Quah
[33]). Unfortunately, in all this work, the characterizations of monotone selections are
“weak” when compared to the strong set order comparative statics in standard lattice
programming problems, where objectives are supermodular in consumption and have
increasing differences with parameters such as income. In this section, we combine
our nonsmooth envelope theorems with duality to construct strong set order compar-
ative statics for the consumer’s problem in income. We refer to the resulting lattice
programming approach as minimax lattice programming.

To formalize the consumer’s problem, let A = C ⊂ E
n+ be the (finite-

dimensional) commodity space,11 C a nonempty sublattice, and s ∈ S =
[0,∞[ the level of income. Fix the vector of prices to be p ∈ Sn−1, with
p >> 0, and denote by Sn−1 the n − 1-dimensional simplex. Define Ci =
{ci ∈ E+, c = (c1, c2, . . . , ci−1, ci , ci+1, . . . , cn) ∈ C} and C−i = {c−i =
(c1, c2, . . . , ci−1, ci+1, . . . , cn) ∈ E

n−1, c ∈ (c1, c2, . . . , ci−1, ci , ci+1, . . . , cn)}. As
we seek strong set order monotone comparative statics, we will consider comparative
statics in the following Veinott sublattice power domains: L(Ei ) = {Li ⊂ E+|Li a

10 A finite-dimensional Euclidean lattice En is the pair (Rn , ≥e), where≥e is the standard componentwise
(product) Euclidean order.
11 The extension to infinite-dimensional commodity spaces is possible using similar duality arguments in
this section.
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nonempty sublattice ofE+), andL(E−i ) = {L−i |L−i a nonempty sublattice ofEn−1+ },
each set endowed with Veinott’s strong set order.

We assume that the consumer’s preferences can be represented by a real-valued util-
ity function u : C → R, where u(c) satisfies the cardinal complementarity conditions
in Quah [33]:

Assumption Q: (i−concave supermodularity). Preferences are represented by a util-
ity function u(c) that is (a) supermodular and bounded below on C ⊂ E

n+,12 (b)
concave in c−i for each ci , and (c) increasing and locally Lipschitz in ci .

Notice, in Assumption Q,we do not require good i to be an element of a convex set;
we only require the objective function in good i to be increasing and locally Lipschitz
in its i th argument. So our results are not contained in Quah [33].

We ask the following question: For each fixed price vector p >> 0, what are
sufficient conditions for the consumer’s demand correspondence for good ci to be
strong set order isotone in income s ∈ S to L(Ci )? To answer this question about
monotone comparative statics, we first build “cardinal” conditions based on Assump-
tion Q and then take increasing transformations to obtain ordinal versions (based on
quasi-concavity and quasi-supermodularity).

The consumer’s problem can be described as follows. For a fixed price vector
p = (p1, p2, . . . , pi−1, 1, pi+1, . . . , pn) >> 0, p ∈ Sn−1, and an income level
s ∈ S, the consumer solves 13:

V (s) = max
c∈D(s)

u(c), (4)

where V (s) is the value function at s. The budget correspondence is:

D(s) = {c : p · c ≤ s, c ∈ C}

and the set of optimal solutions is:

C∗(s) = arg max
c∈D(s)

u(c). (5)

We shall refer to Program (4) as the primal problem, in which Assumption Q is well
defined and attains its maximum.

For any s > 0 and ci ∈ in[0, s[, define the “aggregated primal” as:

V ap(ci , s) = max
c−i∈D(ci ,s)

u(c−i ; ci ) (6)

12 If the utility function is not bounded below, the argument in this section can bemodified to accommodate
this case
13 As our arguments must hold for each fixed p, to economize on notation, we suppress the p in the notation
for parameters except where emphasis is needed, and/or the context is not clear.
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with optimal solutions given by:

Cap∗
−i (ci , s) = arg max

c−i∈D(ci ,s)
u(c−i , ci ).

We can then recast our original monotone comparative statics problem as the existence
of a single-crossing property (or increasing differences) in the following problem:

V (s) = max
ci∈[0,s] V

ap(ci , s), (7)

where V (s) is the value function of the primal problem (4). Notice Program (7) is
a standard (supermodular) lattice programming problem if for each p ∈ Sn−1 with
p >> 0, the value function V ap(ci , s) is supermodular in (ci , s), as the feasible
correspondence in program (7) is Veinott strong set order isotone in s.

To prove the supermodularity of the value function V ap in (6), we first note the
feasible correspondence is generated by the single constraint g(c; p) = p·c intersected
with the condition that c ∈ C, where the constraint is a smooth, convex, increasing
valuation (i.e., both supermodular and submodular). So the feasible correspondence
D(ci , s) = {c−i ∈ C−i : ci ∈ [0, s[. p · c ≤ s} ⊂ R

n−1+ has a convex graph
in s, each ci ∈ [0, s[.14 Since the objective function in the aggregated primal is
concave (although not necessarily smooth) in the choice variables c−i for each ci ∈
[0, s], the value function Vap(ci , s) is a concave function of s for each ci ∈ [0, s].
Therefore, for each ci ∈]0, s[, s > 0, it has a nonempty partial subdifferential in s.
Further, by Proposition 3.5, this value function is Gateaux differentiable. This implies
that our monotone comparative statics problem has been reduced to characterizing a
(nonsmooth) envelope using Proposition 3.5 for the aggregated Problem (6).

To characterize this nonsmooth envelope, we first conjugate the aggregated primal
with the classical Lagrangian dual. Under Assumption Q, as the aggregated primal in
(6) is a standard concave programming problem in c−i for each ci ∈ [0, s[ and s > 0,
we can define:

L(c−i , λ; ci , s) = u(c−i ; ci ) − λ(p · c − s) if c−i ∈ C−i , φ ∈ 	

= +∞ if c−i ∈ C−i , φ /∈ 	

= −∞ if c−i /∈ C−i (8)

= any number in R∗ else. (9)

Using this Lagrangian, we define the “aggregated dual” problem as follows for ci ∈
[0, s), s > 0:

V ad(ci , s) = inf
λ
sup
c−i

L(c−i , λ; ci , s), (10)

14 Notice the interesting cases here of D(ci , s) occur when ci ∈ [0, s[, with s > 0. When ci = s, as utility
is bounded below, the value function can be trivially defined at c∗i = s, and c∗−i = 0.
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where λ ∈ � ⊂ R+, c−i ∈ C−i , so V ad is the value function for the aggregated dual.
By a standard strong duality argument, we know this problem has zero duality gap
(i.e., V ap(ci , s) = V ad(ci , s)), necessary and sufficient standard Lagrange multiplier
rules apply, and we have saddle point stability for optimal solutions, among other
properties (see Rockafellar [34]).

The objective function in the Lagrangian dual is:

V L(λ, ci , s) = sup
c−i

L(c−i ; λ, ci , s), (11)

and the corresponding set of optimal solution is:

CL∗−i (λ, ci , s) = arg sup
c−i∈C−i

L(c−i ; λ, ci , s).

Using standard lattice programming techniques, we can establish the following prop-
erties of the correspondence CL∗−i (λ, ci , s) for any p >> 0:

Lemma 4.1 UnderAssumption Q,CL∗−i : 	×Ci×S×Sn−1 → L(Ci ) is (i)descending
in λ ∈ 	 (with all selections antitone) for each (ci , s) ∈ Ci × S, and (ii) ascending
in ci (with all selections isotone) for each (λ, s) ∈ 	 × S.

Proof Since C−i ⊂ E
n−1 is a section of C, C−i is a sublattice (e.g., Topkis ([22], p.

16). Further, for each (λ, ci , s) ∈ 	×Ci ×S, noting the presence of an indicator func-
tion for the sublattice C−i in the definition of the Lagrangian in (11), we first consider
the parameterized Lagrangian L(λ,ci ,s): E

n−1 �→ R
∗− = R∪ − ∞. As (i) (R∗−, ∗) is

a posemigroup (with identity element) for ∗ = +, and (ii) the indicator function for
any sublattice C

′
i ⊂ Ci super∗ (e.g., Veinott [35], Chapter 6, p. 18) with ∗=+ properly

increasing in this posemigroup, under assumption Q, the Lagrangian is super∗ in ci for
∗ = + (and, hence, L(λ,ci ,s)(c−i ) supermodular in c−i , for each (λ, ci , s)). Further,
L(λ,ci ,s)(c−i ) has strict decreasing differences between (c−i ; λ) for each (ci , s), and
increasing differences between (c−i ; ci ) each (λ, s) (and is a valuation in (ci ; s) for
each (λ, ci )). Therefore, by Topkis’ theorem (Topkis [22], Theorem 2.8.3), the corre-
spondence CL∗−i (λ, ci , s) = CL∗−i (λ, ci ) is a Veinott strong set order descending in λ,

each ci , and ascending in ci , each λ. We note that the strict decreasing (respectively,
increasing) differences imply that every selection of CL∗−i (λ, ci ) is antitone in λ, for
each ci (respectively, isotone in ci , for each λ) and independent of s. This proves the
result. ��

By a standard argument, the value function in V L(λ, ci , s) is convex in λ for each
(ci , s). It is also submodular (noting that for the posemigroup (R∗+, ∗) with R

∗+ =
R∪∞ and ∗ = +, indicator functions of sublattices in the space are sub∗ with ∗
properly increasing). Also, the effective domain of V L is a convex sublattice. By an
application of a standard version of Danskin’s theorem (e.g., Grinold [36], Lemma, p.
186), the right directional envelope V L(λ, ci , s) in λ in direction e+ > 0 is given by:

V L
λ (λ, ci ; e+) = min

c−i∈CL∗−i

(s − p−i c−i (λ, ci , s) − ci ) · e+,
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while for e− < 0 the left directional is:

V L
λ (λ, ci ; e−) = max

c−i∈CL∗−i

(s − p−i c−i (λ, ci , s) − ci ) · e−.

Let �∗(ci , s) be the set of KKT multipliers in the aggregated dual problem. We
now state the following lemma:

Lemma 4.2 Under Assumption Q, in the dual problem (11), the set �∗(ci , s) of
multipliers is (1.a) ascending in Veinott’s strong set order in ci for each s ∈ S, with
∧�∗(ci , s)and∨�∗(ci , s) isotone selections in ci , (1.b)descending inVeinott’s strong
set order in s for each ci ∈ [0, s], with ∧�∗(ci , s) and ∨�∗(ci , s) antitone selections
in s. Moreover, (1.c) the aggregated primal V ad(ci , s) has increasing differences (and,
hence, is supermodular) in (ci , s) and (1.d) if H : R → R is a strictly increasing
transformation, then V ∗ad(ci ; s) = H(V ad(ci ; s)) has the single-crossing property
in (ci ; s).
Proof Given the partial directional derivative V L

λ (λ, ci , s) in any direction e, just
above the lemma, and since CL∗−i is ascending in ci for each s, and independent of
s, it is easy to see that V L(λ, ci , s) has (i) decreasing differences between (λ, ci ) for
each s and (ii) increasing differences between (λ, s) for each ci . Thus, (1.a) and (1.b)
follow directly from Topkis’ theorem (Topkis [22], Theorem 2.8.3).

To see (1.c), appealing to the partial concavity ofV ad(ci , s) in s, for each ci ∈ [0, s],
we can simplify the calculation of the Clarke gradient of Vap(ci , s) in Program (4)
by exploiting the zero duality gap noted before (i.e., V ap(ci , s) = V ad(ci , s)) and
Proposition 3.5 so that for e+ > 0 :

V ap
s (ci , s; e+) = min

λ∈�∗ max
c−i∈Cd∗−i

∂s L(cd−i (ci , s), λ
∗(ci , s), ci , s) · e+

= min
λ∈�∗ �∗(ci , s) · e+

= ∧�∗(ci , s) · e+

which is well defined as �∗(ci , s) is subchained. Since the selection ∧�∗(ci , s) is
isotone in ci for each s, V ap(ci , s) has increasing differences for any right perturbation.
(A similar proof holds for left perturbations, i.e., when e− < 0.) This proves that
V ap(ci , s) has increasing differences in (ci , s) and is therefore supermodular. (1.d)
follows as a strictly increasing transformation of a supermodular function is quasi-
supermodular (hence, has the requisite single-crossing property). ��

We now have our main comparative statics result:

Theorem 4.1 Under Assumption Q, (1.a) C∗
i : S → L(Ci ) is ascending in Veinott

strong set order, (1.b) ∨C∗
i (s) and ∧C∗

i (s) are isotone selections. Further, (1.b) if
H:R → R is a strictly increasing transformation, the monotone comparative statics
in (1.a) is also obtained. Finally, (1.c) if Assumption Q holds for all i ∈ {1, 2, . . . , n},
then statements (1.a) and (1.b) are true for all i, and ∨C∗

i (s) and �C∗
i (s) each are

Lipschitz selections of modulus 1.
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Proof Claims (1.a) and (1.b) follow from Topkis’ theorem (e.g., Topkis ([22], The-
orem 2.8.2) noting that the feasible set [∧

∑
j �=i

c∗
j (λ

∗(s, ci ), ci ), s] is strong set order

increasing in s for all selection c∗
j ∈ C∗

j (λ
∗, ci ), and λ∗ ∈ �∗(s, ci ). The last claim

in the theorem follows from Curtat ([37], Theorem 2.3) noting that ∨C∗
i (s) = s −∑

−i
p−i ·∨C∗−i (s) and

∑
−i

p−i ·∨C∗−i (s) (resp.,∧C∗
i (s) = s−

∑
−i

p−i ·∧C∗−i (s)

and
∑

−i
p−i ·∧C∗−i (s)) are both increasing in s, for all i, at ∨C∗

i (s) (resp.,∧C∗
i (s))

and s is Lipschitz of modulus 1. ��

A few remarks about Theorem 4.1, which is basically a nonsmooth version of
Chipman’s result (e.g., Chipman ([38]). We note first that a similar approach can be
taken to establishmonotone comparative statics per price effects, since issues of (gross)
substitutability or complementarity in demand are reduced to sufficient condition in the
dual program (11) for λ∗(ci , p) to be falling or rising in pi (for own substitution effects
or cross-substitution effects). This comparative statics is rather easily incorporated into
our dual formulation, but appears somewhat difficult to accommodate in Quah [33].
Second, if we only need good i strong set order isotone in s, we do not need the choice
spaceCi ∈ E+ to be convex, so the sectionCi can be a discrete lattice. Quah’s flexible
set ordering approach cannot handle this case. Also, conditions for normality of all the
selections for good i simply require strict increasing differences between (c−i ; ci ),
a result which follows from the arguments above. Further, in principle, our methods
can be extended to integer programming problems (at least in static problems) using
conjugation schemes developed in the literature on Lagrangian relaxation methods.

Finally, to study the ordinal case in principle using dual methods involves conju-
gating quasi-concave programs. For this, we need to pick a different duality scheme
with an “ordinal” Lagrangian (for discussion, see, for example, Crouzeix [39] or Trach
[40], and references therewithin).

5 Conclusions

In this paper we have shown that the Lipschitz property is preserved under maxi-
mization under very general conditions and therefore argued that the set of Lipschitz
function is appropriate for a large class of economic models. Although not differ-
entiable, Lipschitz functions have enough properties (they have Dini derivatives and
Clarke derivatives, among other properties) for the formulation of nonsmooth envelope
theorems for Lipschitz programs, and we derived a number of such envelopes. Our
initial applications of some of our results to various economic models, in particular
models associated with recursive dynamic programs, show that powerful methods can
be developed when nonsmooth envelope theorems are combined with lattice program-
ming techniques. We intend to further explore this promising combination.

We do not address the issue of computing optimal solutions for Lipschitz pro-
gramming problems with nonsmooth constraints, but there is actually a rather large
literature on this question. For theoretical issues, the interested reader can consult the
excellent early survey by Sun and Han [41] as well as the classic monograph of Klatte
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and Kummer [42], especially chapters 9 and 10 which apply directly to the class of
nonsmooth optimization problems we study in this paper.

When applied to nonsmooth programs typically studied in this paper, smooth
gradient-based algorithms may fail to converge and/or traditional gradients of Lip-
schitz functions may not exist. It is important to notice, however, that the literature
on nonsmooth optimization methods has developed numerous special tools for solv-
ing nonsmooth programs, such as replacing gradients with arbitrary subgradients (the
“subgradient methods”) or a combination of such (the “bundle methods”), or approx-
imating subdifferentials by random sampling of gradients (the “gradient sampling
methods”). These approaches represent a powerful set of numerical algorithms appli-
cable to the computation of optimal solutions for the class of problem studied in this
paper. For both an extensive discussion of the theoretical issues involved, as well as for
a concise summary of the collection of numerical implementations for the actual com-
putation of solutions that can be applied to approximate optimal solutions, we refer
the interested reader to this literature, in particular the recent monograph of Bagirov
et al. [43].
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Appendices

AppendixAdiscusses someof the features ofLipschitz functions,AppendixBpresents
some properties of correspondences, and Appendix C discusses some features of lat-
tices and lattice programming.

Appendix A. Properties of Lipschitz Functions

Lipschitz Property. Given an open set	 ⊂ R
n, a function f : 	 → R

m is said to be
Lipschitz continuous (or simply “Lipschitz”) at x ∈ 	 of modulus k ≥ 0 if ∃ δ > 0
such that:

∀x ′, x ′′ ∈ δB(x),
∣∣ f (x ′′) − f (x ′)

∣∣ ≤ k
∣∣x ′′ − x ′∣∣ ,

where B(x) is the open ball of radius 1 centered on x . If the modulus k can be chosen
independently of x on an entire subset of 	, f is said to be globally Lipschitz on that
subset. Note, for instance, that the function x �−→ Log(x) is globally Lipschitz on
any [a, b] for 0 < a < b, but only Lipschitz at every x ∈ 	 =]0,+∞[.
Dini Derivatives. Intuitively, to be Lipschitz at x means that the rate of change of f
around x , no matter how it is calculated, cannot exceed the modulus k. In particular,
it implies that the Dini derivatives, upper and lower bounds for the rate of growth of
f at x in the direction d, respectively, defined as the functions:
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d �−→ D+ f (x; d) = lim sup
t↓0

f (x + td) − f (x)

t
and

d �−→ D+ f (x; d) = lim inf
t↓0

f (x + td) − f (x)

t
,

always exist.
In the event the twoDini bounds coincide, f is said to be Gâ teaux (or directionally)

differentiable at x , with Gâteaux derivative given by the common bound:

f ′(x; d) = lim
t↓0

f (x + td) − f (x)

t
.

If this Gâteaux derivative is a linear function of d, i.e., if f ′(x; d) = ∇ f (x) · d,
then f is said to be differentiable at x . Note, for instance, that the Lipschitz function
x �−→ |x | is directionally (i.e., Gâteaux) differentiable, but not differentiable at x = 0.
Failure to be differentiable “rarely happens,” since Rademacher’s theorem guarantees
that if f is Lipschitz at all point of an open set � ⊂ 	, then it is almost everywhere
differentiable on �. Finally, if the function x −→ ∇ f (.) is continuous at x , then f is
said to be continuously differentiable at x .

Clarke Derivatives and Clarke Gradients. Being Lipschitz at x is a local condition,
as it requires that the rate of change around x be bounded by k. Consequently, the
upper and lower Clarke derivatives, respectively, defined as:

d �−→ f o(x; d) = lim sup
y→x
t↓0

f (y + td) − f (y)

t
and:

d �−→ f −o(x; d) = lim inf
y→x
t↓0

f (y + td) − f (y)

t

also always exist when f is Lipschitz at x .
The upper Clarke derivative is upper semicontinuous in x (hence the lower Clarke

derivative is lower semicontinuous) as established by Clarke [7] (Proposition 2.1.1),
and the Clarke derivatives define wider bounds than the Dini derivatives since:

f −o(x; d) ≤ Df+(x; d) ≤ Df +(x; d) ≤ f o(x; d) = − f −o(x;−d).

The Clarke gradient of a Lipschitz function f at x is the nonempty compact convex
set:

∂ f (x) = cl conv
{
lim∇ f (xi ) : xi → x, xi /∈ �, xi /∈ 	 f

}
,

where cl conv denotes the closure of the convex hull,� is any set of Lebesguemeasure
zero in the domain, and 	 f is a set of points at which f fails to be differentiable.
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Clarke [7] (Proposition 2.1.5) shows that the correspondence x ⇒ ∂ f (x) is upper
hemicontinuous, and Clarke [7] (Proposition 2.1.2) shows that:

f o(x; d) = max
ζ∈∂ f (x)

{ζ.d};

hence, f o(x; d) is a convex function of d.

Clarke Regular Functions. An important class of Lipschitz functions is the upper
Clarke regular (“upper Clarke regular”) functions, Lipschitz functions that areGâteaux
differentiable and for which the Gâteaux derivative coincides with the upper Clarke
derivative, that is, f o(x; d) = f ′(x; d). Lower Clarke regular functions are similarly
defined, i.e., as Gâteaux differentiable Lipschitz functions such that f −o(x; d) =
f ′(x; d).
Several features combine tomake the set of upper Clarke regular functions a natural

extension of convex functions well suited to the study of economies with nonconvex-
ities. First, except for some pathological cases, convex functions are upper Clarke
regular. (Concave functions are lower Clarke regular, since f is upper Clarke regular
iff − f is lower Clarke regular.) Second, the theory, calculus, and properties of Clarke
gradients have its precise counterpart in smooth and convex analysis. In particular, the
Clarke gradient of a convex function coincides with the subgradient of convex analy-
sis, i.e., the set of p ∈ Mm×n satisfying ∀d, p · d ≤ f (x0 + d) − f (x0). Third, upper
Clarke regularity grants more power to a Gâteaux derivative at a specific point and in a
particular direction, since it then becomes an approximation for the maximum rate of
growth of f in awhole neighborhood of that point in that direction. Such local behavior
is one step short of continuous differentiability, as shown in the following result.

Lemma A. 1 If f : 	 → R
m is upper Clarke regular and differentiable at x, then f

is continuously differentiable at x.

Proof Differentiability and upper Clarke regular together imply:

f o(x; d) = f ′(x, d) = ∇ f (x).d;

hence,

f −o(x; d) = − f o(x;−d) = −∇ f (x).(−d)

= ∇ f (x).d = f o(x; d).

Function x → ∇ f (x) is thus both upper and lower semicontinuous at x ; hence, f is
continuously differentiable at x . ��

Similarly, lower Clarke regular differentiable functions are continuously differen-
tiable. Consequently, we note that if f is both upper and lower Clarke regular at x
then f is continuously differentiable at x since:

f o(x; d) = f ′(x; d) = f −o(x; d)

implies that f ′(x; d) is both convex and concave in d, hence linear in d. Thus, f is
differentiable at x and therefore continuously differentiable by the lemma above.
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Appendix B. Properties of Correspondences

A significant advantage to working in metric spaces is that the topological properties
of correspondences can be stated exclusively in terms of sequences.

Definition B. 1 Given A ⊂ R
n and S ⊂ R

m , a nonempty-valued correspondence
D : S � A is:

(i) lower hemicontinuous at s if for every a ∈ D(s) and every sequence sn → s
there exists a sequence {an} such that an → a and an ∈ D(sn).

(ii) upper hemicontinuous at s if for every sequence sn → s and every sequence
{an} such that an ∈ D(sn) there exists a convergent subsequence of {an} whose
limit point a is in D(s).

(iii) closed at s if sn → s, an ∈ D(sn) and an → a implies that a ∈ D(s). (In
particular, this implies that D(s) is a closed set.)

(iv) open at s if for any sequence sn → s and any a ∈ D(s), there exists a sequence
{an} and a number N such that an → a and an ∈ D(sn) for all n ≥ N .

Note that D(s) = {a ∈ A, gi (a, s) ≤ 0, i = 1, . . . , p}, where the gi are Lipschitz
(thus continuous), is necessarily closed at s. The same property holds true in the
presence of Lipschitz equality constraints.

Another property of correspondences which is critical in our analysis is that of
uniform compactness.

Definition B. 2 A nonempty-valued correspondence D is said to be uniformly com-
pact near s if there exists a neighborhood S′ of s such that cl [∪s′∈S′ D(s)] is compact.

We note the result in Hogan [44] that if D is uniformly compact near s, then D
is closed at s if and only if D(s) is a compact set and D is upper hemicontinuous at
s. When D is defined by a system of continuous equality and inequality constraints,
uniform compactness near s thus implies compactness and upper hemicontinuity at s.
In fact, for any s′ sufficiently close to s, since D(s′) is a closed subset of cl [∪s′∈S′ D(s)]
it is therefore compact.

Finally, we will need the following property of hemicontinuous correspondences
(and thus of Clarke gradients).

Proposition B. 1 If D is an upper hemicontinuous correspondence, then for every
compact neighborhood K of x, the set:

⋃
z∈K

D(z)

is compact.

Proof Consider a sequence {yn} in ⋃
z∈K D(z) so that yn ∈ D(zn) for some zn in

K . The sequence {zn} is the compact K , so there exists a subsequence of {zϕ(n)} of
{zn} converging to some z′ ∈ K . By upper hemicontinuity of D at z′, there exists
a subsequence of {yϕ(n)} converging to some y ∈ D(z′). This proves that the initial
sequence {yn} has a convergent subsequence and therefore that the set ⋃x∈K D(x) is
compact. ��
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AppendixC.Posets,Lattices, Supermodularity, andLatticeProgramming

A partially ordered set (or poset) is a set X ordered with a reflexive, transitive, and
antisymmetric relation. If any two elements of X are comparable, X is referred to as
a complete partially ordered set, or chain. An upper (resp., lower) bound of B ⊂ X
is an element xu (resp., xl ) in B such that ∀x ∈ B, x ≤ xu (resp., xl ≤ x). A lattice
is a set X ordered with a reflexive, transitive, and antisymmetric relation ≥ such that
any two elements x and x ′ in X have a least upper bound in X , denoted x ∧ x ′, and
a greatest lower bound in X , denoted x ∨ x ′. The product of an arbitrary collection
of lattices equipped with the product (coordinatewise) order is a lattice. B ⊂ X is a
sublattice of X if it contains the sup and the inf (with respect to X ) of any pair of points
in B.

Let (X,≥X ) and (Y,≥Y ) be posets. A mapping f : X → Y is isotone (or increas-
ing) on X if f (x ′) ≥Y f (x), when x ′ ≥X x , for x, x ′ ∈ X . A correspondence (or
multifunction) F : X → 2Y is ascending in the set relation on 2Y denoted by ≥S if
F(x ′) ≥S F(x), when x ′ ≥X x . A particular set relation of interest is Veinott’s strong
set order (see Veinott [35], Chapter 4). Let L(Y ) = {A|A ⊂ Y, A a nonempty sublat-
tice} be ordered with the strong set order ≥a : if A1, A2 ∈ L(Y ), we say A1 ≥a A2 if
∀(a, b) ∈ A1 × A2, a ∧ b ∈ A2 and a ∨ b ∈ A1.

Let X be a lattice. A function f : X → R is supermodular (resp., strictly super-
modular) in x if ∀(x, y) ∈ X2, f (x ∨ y)+ f (x ∧ y) ≥(resp., >) f (x) + f (y). The
class of supermodular functions is closed under pointwise limits (see Topkis [22],
Lemma 2.6.1). Consider a partially ordered set � = X1 × P (with order ≥), and
B ⊂ X1 × P . The function f : B −→ R has increasing differences in (x1, p) if
for all p1, p2 ∈ P , p1 ≤ p2 �⇒ f (x, p2) − f (x, p1) is nondecreasing in x ∈ Bp1 ,

where Bp is the p section of B. If this difference is strictly increasing in x then f has
strictly increasing differences on B.
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