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1. Introduction

In this paper we apply fixed point results derived by a generalized iteration method in
[7] to prove fixed point results for multivalued mappings in an ordered topological space
X. The cases when X is the space of continuous mappings from a separable topological
space Y to an ordered Hausdorff space Y , when X is the space of vector-valued random
variables, and when X is a product space, are also treated. Obtained results are applied
to study the existence of Nash equilibria of noncooperative games. Proofs are independent
on the Axiom of Choice.

2. Preliminaries

By an ordered topological space we mean a topological space X equipped with such a
partial ordering ’≤’ that the sets [a) = {x ∈ X | a ≤ x} and (b] = {x ∈ X | x ≤ b}, and
hence also [a, b] = [a) ∩ (b], are closed for a, b ∈ X. If the topology of X is induced by a
metric, we say that X is an ordered metric space. A subset W of an ordered topological
space X is called well-ordered if each nonempty subset of W has a minimum. In particular,
each well-ordered subset of X is a chain. If Y is a partially ordered set (poset), we say
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that a mapping G : Y → X is increasing in a subset W of Y if G(x) ≤ G(y) whenever
x, y ∈ W and x ≤ y in Y .

The following Lemma is a consequence of [7, Theorems 1.1.1 and 1.2.1].

Lemma 2.1. Given G : X → X and a ∈ X, there is a unique well-ordered chain C in X,

called a well-ordered (w.o.) chain of G-iterations of a, satisfying

a = minC, and if a < x ∈ X, then x ∈ C iff x = sup G[{y ∈ C | y < x}]. (2.1)

If a ≤ G(a), if G is increasing in [a), and if x∗ = sup G[C] exists, then x∗ is the smallest

fixed point of G in [a) and

x∗ = maxC = min{y ∈ [a) | G(y) ≤ y}. (2.2)

For the sake of completeness we state the dual result to Lemma 2.1.

Lemma 2.2. If G : X → X and b ∈ X, there exists exactly one inversely well ordered

chain D (each nonempty subset of D has the greatest element) in X, called an i.w.o. chain
of G-iterations of b, such that

b = maxD, and if X 3 x < b, then x ∈ D iff x = inf G[{y ∈ D | x < y}]. (2.3)

If G(b) ≤ b, if G is increasing in (b], and if x∗ = inf G[D] exists, then x∗ is the greatest

fixed point of G in (b], and

x∗ = min D = max{y ∈ (b] | y ≤ G(y)}. (2.4)

Remark 2.1. It follows from [7, Lemma 1,1,3] that the least elements of the w.o. chain
C of G-iterations of a are the elements of the iteration sequences (Gnai)∞n=0 with a0 = a

and ai+1 = supn Gn(ai), i = 0, 1, . . . , as long as these sequences are strictly increasing.
In particular, if in Lemma 2.1 Gnai = Gn+1ai for some n, i ∈ N, then x∗ = Gnai is
the smallest fixed point of G in [a). Similarly, the greatest elements of the i.w.o. chain
D of G-iterations of b are the elements of the iteration sequences (Gnbi)∞n=0 with b0 = b

and bi+1 = infn Gn(bi), i = 0, 1, . . . , as long as these sequences are strictly decreasing.
In particular, if in Lemma 2.2 Gnbi = Gn+1bi for some n, i ∈ N, then x∗ = Gnbi is the
greatest fixed point of G in (b].

3. Fixed points results for multivalued mappings

In this section we assume that X = (X,≤) is an ordered topological space which has
the following property.

(X0) Each nonempty well-ordered chain C of X whose increasing sequences converge
contains an increasing sequence which converges to sup C, and each nonempty
inversely well-ordered chain D of X whose decreasing sequences converge contains
a decreasing sequence which converges to inf D.
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A nonempty subset W of X is called downwards closed if it contains limits of all its
decreasing and convergent sequences. If W contains limits of all its increasing and conver-
gent sequences, it is called upwards closed. If W is downwards and upwards closed, we say
that W is order closed. W is called a meet sublattice if inf{x, y} exists in X and belongs
to W all x, y ∈ W . If sup{x, y} exists in X and belongs to W all x, y ∈ W , we say that
W is a join sublattice. A sublattice is both meet and join sublattice.

Denote by 2X the set of all subsets of X. If F : X → 2X \ ∅ and Z a nonempty subset
of X, denote F [Z] := ∪{F (x) | x ∈ Z}. If Y is a poset, a mapping F : Y → 2X \ ∅ is
called increasing upwards if x ≤ x̄ in Y and y ∈ F (x) imply that y ≤ ȳ for some ȳ ∈ F (x̄).
F is said to be increasing downwards if x ≤ x̄ in Y and ȳ ∈ F (t̄) imply the existence of
y ∈ F (x) such that y ≤ ȳ. If F is increasing upwards and downwards, we say that F is
increasing.

A mapping F : Y → 2X \ ∅ is called join ascending if sup{y, ȳ} ∈ F (x̄) whenever
x, x̄ ∈ Y , x ≤ x̄, y ∈ F (x) and ȳ ∈ F (x̄). F is meet ascending if inf{y, ȳ} ∈ F (z) for all
y ∈ F (x) and ȳ ∈ F (x̄) whenever x, x̄ ∈ Y , x ≤ x̄. If F is join and meet ascending, we say
that F is ascending (cf. [12]).

The first fixed point result of this section reads as follows.

Theorem 3.1. Given a nonempty set T and mappings F t : X → 2X \ ∅, t ∈ T , assume

that the following hypotheses are valid for each t ∈ T .

(h0) Monotone sequences of F t[X] converge.

(h1) F t is increasing downwards, and F t(x) is a downwards closed and separable meet

sublattice of X for each x ∈ X.

(h2) There exists an at ∈ X such that F t(at) ⊆ [at).

Then each F t has the smallest fixed point xt in [at), and

xt = min{y ∈ [at) | minF t(y) ≤ y}. (3.1)

The above result holds also when (h1) is replaced by the following hypothesis.

(h3) F t is meet ascending, and F t(x) is downwards closed and separable for each x ∈ X.

Proof. Assume first that (h0)–(h2) hold. Given t ∈ T and x ∈ X we shall first show
that min F t(x) exists. Since F t(x) is separable by (h1), it has a countable dense subset
B. As a countable set B can be represented in the form B = {zn | 0 ≤ n < m}, where
m ∈ N ∪ {∞}. Because F t(x) is a meet sublattice of X by (h1), we can define a sequence
(yn) in F t(x) by yn = inf{z0, . . . , zn}, 0 ≤ n < m. The so constructed sequence (yn) is
decreasing, whence it has a minimum or a limit y ∈ X by the hypothesis (h0). Since F t(x)
is downwards closed by (h1), then y belongs to F t(x). Moreover, y = infn yn by the dual
of [7, Proposition 1.1.3], whence the construction of (yn) implies that y is a lower bound
of B. Thus B is a subset of [y). Since [y) is closed, then also F t(x), as a subset of the
closure of B, is contained in [y), so that y = min F t(x).
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The above proof justifies that we can define a mapping G : X → X by

G(x) = min F t(x), x ∈ X. (3.2)

The hypothesis (h2) implies that at ≤ G(at). G is also increasing in [at) because F t

is increasing downwards. Let C be the w.o. chain of G-iterations of at. In view of [9,
Corollary 12] we have G[C] ⊆ C, so that G[C] is well-ordered and G[C] ⊆ F t[C]. This
result, the hypothesis (h0) and property (X0) of X imply that xt = sup G[C] exists. It
then follows from Lemma 2.1 that xt is the smallest fixed point of G in [at), and (2.2)
holds. Thus, by (3.2), xt is also the smallest fixed point of F t in [at). Relation (3.1) is a
direct consequence of (2.2) and (3.2).

By the hypothesis (h3) F t is meet ascending, which implies that F t is increasing down-
wards, and that F t(x) is a meet sublattice for each x ∈ X. It then follows from (h3) that
the hypothesis (h1) holds. ut

As an application of Lemma 2.2 we obtain the following dual result to Theorem 3.1.

Proposition 3.1. Given a nonempty set T , assume that mappings F t : X → 2X \∅, t ∈ T ,

satisfy the hypothesis (h0) and the following hypotheses.

(h4) F t is increasing upwards, and F t(x) is upwards closed and separable join sublattice

for each x ∈ X.

(h5) There exists a bt ∈ X such that F t(bt) ⊆ (bt].

Then F has the greatest fixed point in (b], and

xt = max{y ∈ (bt] | y ≤ maxF t(y)}. (3.3)

The above result holds also when (h4) is replaced by the following hypothesis.

(h6) F t is join ascending, and F t(x) is upwards closed and separable for each x ∈ X.

The relations (3.1) and (3.3) can be used to prove the following comparison results when
T is a poset.

Proposition 3.2. Let T be a poset, and F t : X → 2X \ ∅, t ∈ T .

a) Assume that the hypotheses of Theorem 3.1 hold, that t 7→ F t(x) is increasing down-

wards for each x ∈ X, and that t 7→ at is increasing. If xt denotes the smallest fixed point

of F t in [at), then t 7→ xt is increasing.

b) Assume that the hypotheses of Proposition 3.1 hold, that t 7→ F t(x) is increasing up-

wards for each x ∈ X, and that t 7→ bt is increasing. If xt denotes the greatest fixed point

of F t in (bt], then t 7→ xt is increasing.

Proof. a) Let t, t̄ ∈ T , t ≤ t̄, be given. The given hypotheses imply that mint F (x) ≤
min F t̄(x) for each x ∈ X. In particular,

min F t(xt̄) ≤ min F t̄(xt̄) = xt̄.
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Moreover, [at̄ ⊆ [at), so that xt̄ belongs to the set {y ∈ [at) | minF t(y) ≤ y}. Thus (3.1)
implies that xt ≤ xt̄.

Applying relation (3.3) a similar reasoning implies the conclusions of case b). ut

The existence of elements at, bt ∈ X such that F t(at) ⊆ [at) and/or F t(bt) ⊆ (bt] can
sometimes be ensured by properties of X defined as follows.

Definition 3.1. We say that c ∈ X in a sup-center of X if sup{c, x} exists in X for all
x ∈ X, and an inf-center of X if inf{c, x} exists in X for all x ∈ X. If c is both sup- and
inf-center of X, we say that c is an order center of X.

If X is lattice-ordered, then each point of X is its order center. If X is a meet (respec-
tively join) lattice, then each point of X is its inf- (respectively sup-) center. If minX

(respectively maxX) exists, it is a sup-center (respectively an inf-center) of X. If E is a
Riezs space or a Banach-lattice, then the center of any ball X of E is an order center of
X. This holds, in particular, if E the Euclidean m-space Rm, ordered coordinatewise.

The following result is a consequence of Propositions 3.1 and 3.2.

Proposition 3.3. Given a nonempty set T and mappings F t : X → 2X \ ∅, t ∈ T assume

that the hypothesis (h0) and one of the hypotheses (h4) and (h6) hold for each t ∈ T . If

X has a sup-center c, then each F t has the greatest fixed point xt in (bt], where

bt = min{y ∈ [c) | sup{c, maxF t(y)} ≤ y}. (3.4)

Moreover, if T is a poset, and if the mapping t 7→ F t(x) is increasing upwards for each

x ∈ X, then the mappings t 7→ bt and t 7→ xt are increasing.

Proof. Assume that X has a sup-center c. Then for each t ∈ T the relation

G(x) = sup{c, maxF t(x)}, x ∈ X (3.5)

defines an increasing mapping G : X → X, and c ≤ G(c). As in the proof of [10, Theorem
2.1] it can be shown by applying the hypothesis (h0) that if C is the w.o. chain of G-
iterations of c, then bt = sup G[C] exists. By Lemma 2.1, bt is the smallest fixed point
of G in [c). It then follows from (2.2) and (3.5) that bt satisfies (3.4). In particular,
maxF t(bt) ≤ bt, so that F t(bt) ⊆ (bt]. Thus the hypothesis (h5) holds. Because the other
hypotheses of Proposition 3.1 are valid, then F t has the greatest fixed point xt in (bt].

If T is a poset, and if the mapping t 7→ F t(x) is increasing upwards for each x ∈ X, it
follows from (3.5) that the mapping t 7→ bt is increasing. This result and Proposition 3.2
b) imply that also the mapping t 7→ xt is increasing. ut

As a consequence of Theorem 3.1 and Proposition 3.2 we obtain similarly the following
dual result to Proposition 3.3.
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Proposition 3.4. Given a nonempty set T assume that mappings F : X × T → 2X \ ∅,
t ∈ T , satisfy the hypothesis (h0) and one of the hypotheses (h1) and (h3). If X has an

inf-center c, then each F t has the smallest fixed point xt in [at), where

at = max{y ∈ (c] | x ≤ inf{c, minF t(y)}}. (3.6)

Moreover, T is a poset, and if the mapping t 7→ F t(x) is increasing downwards for each

x ∈ X, then the mappings t 7→ at and t 7→ xt are increasing.

As a direct consequence of Propositions 3.3 and 3.4 we get the following result.

Theorem 3.2. Given a nonempty set T , assume that mappings F t : X → 2X \ ∅, t ∈ T ,

satisfy the hypothesis (h0) and one of the following hypotheses.

(h7) Each F t is increasing, and their values are order closed and separable sublattices.

(h8) Each F t is ascending, and their values are order closed and separable.

If X has an order center c, then F t has for each t ∈ T smallest and greatest fixed points

xt and xt in [at, bt], where bt and at are given by (3.4) and (3.6). Moreover, if T is a poset,

and if t 7→ F t(x) is increasing for each x ∈ X, then all the mappings t 7→ xt, t 7→ at,

t 7→ xt and t 7→ bt are increasing.

Remarks 3.1. The w.o. and i.w.o. chains needed in the proofs are countable by [7,
Propositions 1.1.6 and 1.3.6].

All the proofs of above results are independent of Zorn’s Lemma and the Axiom of
Choice. The separability assumptions given for values of F and F t can be omitted if the
Axiom of Choice is used (cf. [8, Proposition 14]).

In [2] fixed point results are proved for multivalued mappings in ordered topological
vector spaces by applying a recursion method presented in [7, Lemma 1.1.1] and the Axiom
of Choice.

The following counter-example shows that the result of Theorem 3.1 does not hold,
in general, even for a single-valued increasing mapping F : X → X if X does not posses
property (X0), or if X is a partially ordered set and topological convergence is replaced
by order convergence.

Example 3.1. Let L∞[0, 1] denote the space of all bounded and Lebesgue-measurable
functions x : [0, 1] → R. Choose

X = {x ∈ L∞[0, 1] | 0 ≤ x(t) ≤ 1, for all t ∈ [0, 1]}.

Assuming that X is ordered pointwise, then the pointwise limit of each increasing sequence
of X exists and is its supremum in X, and the pointwise limit of each decreasing sequence
of X exists and is its infimum in X. Moreover, the pointwise ordering of X is lattice-
ordering. But X is not a complete lattice, whence there exists by [3] an increasing mapping
F : X → X which does not have any fixed point. However, monotone sequences F [X]
converge in X with respect to the topology of pointwise convergence, and also with respect
to the order convergence of X.
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4. Spaces which have property (X0)

One reason to study fixed point theorems in ordered topological spaces with property
(X0) is to simplify the hypotheses. In this section we present examples of topological
spaces having property (X0).
- If X satisfies the second countability axiom, then each chain of X is separable, whence
property (X0) follows from [7, Lemma 1.1.7] and its dual.
- Each ordered metric space has property (X0) by [7, Proposition 1.1.5] and its dual.
- Each closed subset X of an ordered normed space is an ordered metric space, and thus
has property (X0).
- Each weakly sequentially closed subset X of an ordered normed space E satisfies (X0)
with respect to the weak topology. This result follows from [1, Lemma A.3.1] and its dual.

Consider next the case when X is a subset of the space C(Y, Z) of continuous functions
x : Y → Z, where Y is a topological space and Z is an ordered topological space. In
what follows, we assume that C(X, Y ), and all its subsets are equipped with the pointwise
ordering and the topology of pointwise convergence.

Lemma 4.1. Let Y be a separable topological space and Z an ordered Hausdorff space

which has property (X0). Then each nonempty subset X of C(Y, Z) is an ordered topo-

logical space which has property (X0).

Proof. Let W be a well-ordered chain in a nonempty subset X of C(Y, Z), and assume
that each increasing sequence of W converges pointwise to a mapping of X. For each
s ∈ Y the set W (s) = {x(s)}x∈W is a well-ordered chain of Z. For if A is a nonempty
subset of W (s), then the set B = {x ∈ W | x(s) ∈ A} is nonempty, and thus has the least
element y. Thus y(s) = minA because of the pointwise ordering of C(X, Y ). Since Y is
separable it contains a countable and dense subset D = {sj}j∈N. Let s ∈ D be fixed, and
let (znk

)∞k=0 be a subsequence of an increasing sequence (zn)∞n=0 of W (s). If (znk
)∞k=m is a

constant sequence for some m ∈ N, then znm
is the limit of (znk

)∞k=0. Otherwise (znk
)∞k=0

has a strictly increasing subsequence (znki
)∞i=0. Since the members of this subsequence

belong to W (s), and since W is well-ordered with respect to the pointwise ordering of
C(Y, Z), there exists an increasing sequence (xi)∞i=0 in W such that xi(s) = znki

for each
i ∈ N (take xi = min{x ∈ W | x(s) = znki

}). Because (xi)∞i=0 converges pointwise,
then (xi(s))∞i=0 = (znki

)∞i=0 converges. Consequently, each subsequence of (zn)∞n=0 has a
convergent subsequence, whence (zn)∞n=0 converges by [7, Corollary 1.1.3].

The above proof shows that each increasing sequence (zn)∞n=0 of W (s) converges when
s ∈ D. Since W (s) is a well-ordered chain in Z which has property (X0), then for each sj ,
j ∈ N, there exists an increasing sequence (xj

k(sj))∞k=0 in W (sj) such that

lim
k→∞

xj
k(sj) = sup W (sj). (4.1)

Denote
xn = max{xj

k | 0 ≤ j, k ≤ n}, n ∈ N. (4.2)
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The so obtained sequence (xn)∞n=0 is and increasing sequence of W , whence it converges
pointwise to a mapping of X by a hypothesis. Denoting

x(s) = lim
n→∞

xn(s), s ∈ Y, (4.3)

it follows from (4.1), (4.2) and (4.3) that

x(sj) = sup W (sj) for each j ∈ N. (4.4)

To show that x = sup W , let s ∈ Y \D be given. The above proof shows that there exists
an increasing sequence (yn)∞n=0 in W such that

lim
n→∞

yn(s) = sup W (s). (4.5)

Denoting zn = max{xn, yn}, n ∈ N, we obtain an increasing sequence (zn)∞n=0 of W .
Denoting by z its limit function, which is continuous by a hypothesis, it follows from (4.4)
and (4.5) that

z(sj) = sup W (sj), j ∈ N and z(s) = sup W (s). (4.6)

Both x and z are continuous, their restrictions to the dense subset D of Y are equal by
(4.4) and (4.6). Since Z is a Hausdorff space, then z = x. In particular,

x(s) = lim
n→∞

xn(s) = sup W (s).

This result holds for all s ∈ Y \ D. It holds by (4.3) and (4.4) also for all s ∈ D, whence
x is a pointwise supremum of W . Obviously, x = sup W with respect to the pointwise
ordering of X. Moreover, x is a pointwise limit of an increasing sequence (xn)∞n=0 of W .

The proof that each inversely well-ordered chain W of X whose decreasing sequences
converge pointwise in X contains a decreasing sequence which converges pointwise to inf W

in X is dual to the above proof. ut

Assume next that Y is a topological space and Z = (Z, d) is a metric space. We say
that a subset W of C(Y, Z) is equicontinuous if for each t ∈ Y and for each ε > 0 there
exists a neighbourhood U of t such that

d(x(s), x(t)) ≤ ε for all x ∈ W and s ∈ U.

The next result is an easy consequence of the proof of [7, Proposition 1.3.8].

Lemma 4.2. Let Y be a topological space and Z = (Z, d) an ordered metric space. If a

pointwise monotone and equicontinuous sequence of functions from Y to Z has a pointwise

limit, this limit function is continuous.

As a consequence of Lemma 4.1, Lemma 4.2 we obtain the following result.
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Corollary 4.1. Assume that Y is a separable topological space, and that Z is an ordered

metric space. Then the fixed point results of Section 3 hold when X is a nonempty closed

subset of C(Y, Z), if the hypothesis (h0) is replaced by

(h) Monotone sequences of F t[X] are equicontinuous and converge pointwise for each

t ∈ T .

Proof. Since Z is an ordered metric space it is a Hausdorff space and it has property
(X0). It then follows from Lemma 4.1 that X has also this property. If (xn)∞n=0 is a
monotone sequence in F t[X], t ∈ T , it is equicontinuous and converges pointwise to a
function x : Y → Z by a hypothesis. Lemma 4.2 implies that x is continuous. Because
F t[X] ⊆ X, and X is closed, then x ∈ X.

The above proof shows that monotone sequences of F t[X] converge for each t ∈ T ,
whence the hypothesis (h0) holds. ut

If Y is compact metric space, it is also separable. Moreover, if Z is an ordered metric
space, the functions of C(Y, Z) are uniformly continuous, and we can define a metric ρ in
C(Y, Z) by ρ(x, y) = sup{d(x(t), y(t)) | t ∈ Y }. The proof which is similar to that given
in [4, Section 7.5] in the case when Z is a Banach space, shows that if an equicontinuous
sequence of C(Y, Z) converges pointwise, it converges in (C(Y, Z), ρ).

Let B be a closed and bounded ball in a separable and weakly sequentially complete
ordered Banach space E whose order cone is normal. Denote by B the σ-algebra of Borel
sets of B. Let (Ω, P ) denote a probability space and X the space of all B-valued random
variables on (Ω, P ), i.e. measurable mappings x : (Ω, P ) → (B,B). Define a Ky Fan metric
α and a partial ordering ≤r in X by

{
α(x, y) = inf{ε > 0 | P{ω ∈ Ω | (‖x(ω) − y(ω)‖ > ε} ≤ ε},
x ≤r y if and only if P{ω ∈ Ω | x(ω) ≤ y(ω)} = 1.

It can be shown that (X,≤r, α) is an ordered metric space.

Lemma 4.3. Each monotone sequence of (X,≤r) converges in (X, α).

Proof. Let (xn)∞n=1 be a monotone sequence in (X,≤r). The definition of ≤r implies that
for almost all ω ∈ Ω the sequence (xn(ω))∞n=1 of E is monotone. Since B is bounded, it
follows from [6, Theorem 2.4.5] that the limit x(ω) = limn→∞ xn(ω) exists for almost all
ω ∈ Ω. Thus x is (equal a.s. to) a B-valued random variable by [5, Theorem 4.2.2], and
xn → x a.s., and hence also in probability. Because the Ky Fan metric α metrizes the
convergence in probability by [5, Theorem 9.2.2], then α(xn, x) → 0. ut

The next result is a consequence of Theorems 3.1, 3.2 and 3.3 and Lemma 4.3.

Corollary 4.2. Let B be a bounded ball in a separable and weakly sequentially complete

ordered Banach space whose order cone is normal, and let X be the space of all B-valued

random variables on a probability space (Ω, P ), metrized by the Ky Fan metric. Then the

hypothesis (h0) of Theorem 3.1 holds for all mappings F : X × T → 2X \ ∅.
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5. Fixed point results in product spaces

In this section we consider the case when X is a product space: X =
∏

i∈I Xi, where
I is an index set and each Xi = (Xi,≤i) is an ordered topological space. Define a partial
ordering ≤ on X by

{xi}i∈I ≤ {yi}i∈I iff xi ≤i yi for each i ∈ I. (5.1)

Denoting by pj the projection mapping from X onto Xj , j ∈ I, it follows from (5.1)
that a sequence (yn)∞n=0 of X is increasing (respectively decreasing) iff pj(yn) ≤j pj(yn+1)
(respectively pj(yn+1) ≤j pj(yn)) for all j ∈ I and n ∈ N.

Lemma 5.1. Assume that each coordinate space Xi = (Xi,≤i) of a product space X =∏
i∈I Xi has property (X0).

a) If C is a well-ordered chain in X, and if increasing sequences of pj(C) converge in Xj

for each j ∈ I, then sup C exists.

b) If D is an inversely well-ordered chain in X, and if decreasing sequences of pj(D)
converge in Xj for each j ∈ I, then inf D exists.

Proof. a) Let C be a well-ordered chain in X, and assume that each increasing sequence
of pj(C) converges in Xj for each j ∈ I. To show that each projection pj(C) of C is a well-
ordered subset of (Xj ,≤j), let j ∈ I be fixed, and let A be a nonempty subset of pj(C).
Then the set B = {x ∈ C | pj(x) ∈ A} is a nonempty subset of C, whence y = min B

exists. This result and (5.1) imply that pj(y) = min A. Since pj(C) is a well-ordered chain
in Xj which has property (X0), and since each increasing sequence of pj(C) converges in
Xj , then xj = sup pj(C) exists in Xj, and it is a limit of an increasing sequence of pj(C).
This result holds for each j ∈ I, whence the definition (5.1) of the partial ordering of X

implies that x = {xi}i∈I is the supremum of C in X.
The proof of case b) is dual to the above one. ut

With the help of Lemma 5.1 we are now able to generalize the results of Section 3 to
the case when X is a product of ordered topological spaces having property (X0). For
instance, Theorem 3.1 can be generalized as follows.

Theorem 5.1. Let T be a nonempty set, and let each coordinate space Xi = (Xi,≤i) of

X =
∏

i∈I Xi posses property (X0). Assume that each mapping F t
i : X → 2Xi \ ∅, t ∈ T ,

i ∈ I, satisfies the following hypotheses.

(hi0) Monotone sequences of F t
i [X] converge in Xi.

(hi1) F t
i is increasing downwards, and F t

i (x) is a downwards closed and separable meet

sublattice of Xi for all fixed x ∈ X.

(hi2) There exists an at = {at
i}i∈I ∈ X such that F t

i (at) ⊆ [at
i).

Then for each t ∈ T the mapping F t = {F t
i }i∈I has the smallest fixed point xt in [at), and

xt = min{y ∈ [at) | minF t(y) ≤ y}. (5.2)
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If T is a poset, if t 7→ F t
i (x) is increasing downwards for each i ∈ I and x ∈ X, and if

t 7→ at
i is increasing for each i ∈ I, then the mapping t 7→ xt is increasing.

The above results hold also when (hi1) is replaced by the following hypothesis.

(hi3) Each F t
i is meet ascending, and F t

i (x) is a downwards closed and separable subset

of Xi for each x ∈ X.

Proof. Applying the hypothesis (hi0) one can show as in the proof of Theorem 3.1 that
min F t

i (x) exists for all fixed i ∈ I, t ∈ T and x ∈ X so that, by (5.1), F t(x) = {F t
i (x)}i∈I

has the minimum for all t ∈ T and x ∈ X. Thus, for each fixed t ∈ T we can define a
mapping Gt : X → X by

Gt(x) = minF t(x) = {min F t
i (x)}i∈I , x ∈ X. (5.3)

Gt is increasing because F t is by (hi1) and (5.1) increasing. Let C be the w.o. chain of
Gt-iterations of at. Because C is well-ordered and Gt is increasing, then Gt[C] is well-
ordered and Gt[C] ⊆ F t[C]. This result, the hypothesis (hi0) and Lemma 5.1 imply that
xt = sup Gt[C] exists. It then follows from Lemma 2.1 that xt is the smallest fixed point
of Gt in [at), and

xt = min{y ∈ [at) | Gt(y) ≤ y}.

Thus, by (5.3), xt is also the smallest fixed point of F t in [at), and (5.2) holds.
The above result holds for each t ∈ T . If T is a poset, and if t 7→ F t

i (x) is increasing
downwards for each i ∈ I and x ∈ X, then the mapping t 7→ min F t(x) = {min F t

i (x)}i∈I

is increasing for each x ∈ X. Moreover, if t 7→ at
i is increasing for each i ∈ I, then the

mapping t 7→ at = {at
i}i∈I is increasing. Thus the relation (5.2) can be used, as in the

proof of Proposition 3.2, to show that the mapping t 7→ xt is increasing.
If the hypothesis (hi3) holds, then each F t

i is increasing downwards, and F t
i (x) is a meet

sublattice of Xi for all fixed i ∈ I, x ∈ X and t ∈ T . Thus (hi1) holds. ut

As a dual result of Theorem 5.1 one can prove similarly the following generalization to
Proposition 3.1, by applying Lemma 2.2 instead of Lemma 2.1.

Proposition 5.1. Let T and X =
∏

i∈I Xi be as in Theorem 5.1. Assume that each

mapping F t
i : X → 2Xi \ ∅, t ∈ T , i ∈ I, satisfies (hi0) and the following hypotheses.

(hi4) F t
i is increasing upwards in X, and F t

i (x) is an upwards closed and separable join

sublattice of Xi for all fixed x ∈ X.

(hi5) There exists a bt = {bt
i}i∈I ∈ X such that F t

i (bt) ⊆ (bt
i].

Then for each t ∈ T the mapping F t = {F t
i }i∈I has the greatest fixed point xt in (bt], and

xt = max{y ∈ (bt] | y ≤ maxF t(y)}. (5.4)

If T is a poset, if t 7→ F t
i (x) is increasing upwards for each i ∈ I and x ∈ X, and if t 7→ bt

i

is increasing for each i ∈ I, then the mapping t 7→ xt is increasing.

The above results hold also when (hi4) is replaced by the following hypothesis.

(hi6) Each F t
i is join ascending in X, and F t

i (x) is an upwards closed and separable

subset of Xi for each x ∈ X.
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The following result is a generalization to Proposition 3.3.

Proposition 5.2. Let T and X =
∏

i∈I Xi be as in Theorem 5.1. Assume that mappings

F t
i : X → 2Xi \ ∅, t ∈ T , i ∈ I, satisfy the hypothesis (hi0) and one of the hypotheses (hi4)

and (hi6). If each Xi has a sup-center ci, then each F t = {F t
i }i∈I has the greatest fixed

point xt in (bt], where

bt = min{y ∈ [c) | sup{c, maxF t(y)} ≤ y}, c = {ci}i∈I . (5.5)

Moreover, if T is a poset, and if the mapping t 7→ F t
i (x) is increasing upwards for each

i ∈ I and x ∈ X, then the mappings t 7→ bt and t 7→ xt are increasing.

The next result is a generalization to Proposition 3.4.

Proposition 5.3. Let T and X =
∏

i∈I Xi be as in Theorem 5.1, and assume that

mappings F t
i : X → 2Xi \ ∅, t ∈ T , i ∈ I, satisfy the hypothesis (hi0) and one of the

hypotheses (hi1) and (hi3). If each Xi has an inf-center ci, then each F t = {F t
i }i∈I has

the smallest fixed point xt in [at), where

at = max{y ∈ (c] | x ≤ inf{c, minF t(y)}}, c = {ci}i∈I . (5.6)

Moreover, if T is a poset, and if the mapping t 7→ F t
i (x) is increasing downwards for each

i ∈ I and x ∈ X, then the mappings t 7→ at and t 7→ xt are increasing.

As a direct consequence of Propositions 5.2 and 5.3 we get the following result.

Theorem 5.2. Let T and X =
∏

i∈I Xi be as in Theorem 5.1. Assume that mappings

F t
i : X → 2Xi \ ∅, t ∈ T , satisfy the hypothesis (hi0) and one of the following hypotheses.

(hi7) Each F t
i is increasing, and their values are order closed and separable sublattices.

(hi8) Each F t
i is ascending, and their values are order closed and separable.

If each Xi has an order center ci, then F t = {F t
i }i∈I has for each t ∈ T smallest and

greatest fixed points xt and xt in [at, bt], where bt and at are given by (5.5) and (5.6).

Moreover, if T is a poset, and if t 7→ F t(x) is increasing for each x ∈ X, then all the

mappings t 7→ xt, t 7→ at, t 7→ xt and t 7→ bt are increasing.

Remarks 5.1. In the case when each Xi is a nonempty closed subset of an ordered normed
space Ei, the hypothesis (hi0) can be replaced by one of the following hypotheses.

(i) The order cone of Ei is regular or fully regular, and F t
i [X] is order-bounded.

(ii) The order cone of Ei is fully regular, and F t
i [X] is order- or norm-bounded.

(iii) Ei is reflexive, Xi is equipped with weak topology, and F t
i [X] is norm-bounded.

(iv) Ei is weakly sequentially complete, the order cone of Ei is normal, and F t
i [X] is

order- or norm-bounded.

Each of the following spaces equipped with a p-norm are ordered Banach spaces with
fully regular order cone when 1 ≤ p < ∞.
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a) Rm, ordered coordinatewise.
b) lp, ordered componentwise.
c) Lp(Ω, E), ordered a.e. pointwise, where Ω = (Ω,A, µ) is a measure space and E is an
ordered Banach space with fully regular order cone (cf. [7, Proposition 5.8.7]).

As for proofs of the above properties and further examples of ordered Banach spaces E

whose order cones are regular or fully regular, see, e.g., [1,6,11].
The spaces given in a)–c) above are also reflexive if 1 < p < ∞, Ω is a domain in Rm

and E = R. Sobolev spaces W k,p(Ω) and W k,p
0 (Ω), k ∈ N, ordered a.e. pointwise, are

reflexive ordered Banach spaces. Moreover, these spaces and those given in a) and b) are
lattice-ordered, whence each of their points are their order centers.

6. Applications to game theory

We shall now apply results of Section 5 to study the existence of Nash equilibria of
multi-firm noncooperative games. Following the terminology adopted in [12], let I be a
set of firms and T be a poset of exogenous parameters reflecting the environment in which
the firms compete. Let X := Πi∈IXi be the product of strategy posets Xi of the firm s
and Xi := Πj∈I\{i}Xj be the product of strategies of firms other than i. Given a strategy
s = {si}i∈I ∈ X of the firms and i ∈ I, we use the notation s = (si, si), where si ∈ Xi

denotes firm i’s strategy and si ∈ Xi the strategy of other firms.
Let Xs,t

i ⊆ Xi be firm i’s feasible replies to (s, t), and let ut
i(s) denote a poset Zi-valued

utility to firm i ∈ I when s ∈ X is a strategy of the firms and t ∈ T is an exogenous
parameter. Let F t

i (s) ⊆ Xs,t
i be firm i’s optimal replies to (s, t) ∈ X × T , i.e., each point

of F t
i (s) maximizes the values of the function us,t

i : Xs,t
i → Zi, defined by

us,t
i (σ) := ut

i(s
i, σ), σ ∈ Xs,t

i . (6.1)

Call the strategy s ∈ X a Nash equilibrium for t ∈ T if s ∈ F t(s) = Πi∈IF
t
i (s).

In what follows we assume that

(A) Xi:s and Zi:s are ordered second countable topological spaces.

Our first existence result for Nash equilibria is a consequence of Proposition 5.2.

Proposition 6.1. Assume that the following hypotheses are valid.

(H0) Monotone sequences of ∪{Xs,t
i | s ∈ X} converge in Xi for all i ∈ I and t ∈ T .

(H1) Each Xs,t
i is upwards closed.

(H2) If (s, t) ≤ (s, t) in X × T , i ∈ I, σ ∈ Xs,t
i and τ ∈ Xs,t

i , then sup{σ, τ} ∈ Xs,t
i , and

us,t
i (σ) ≤ us,t

i (sup{σ, τ}).

If each Xi is a join lattice, then for each t ∈ T and for each choice of ci ∈ Xi there exist

the greatest Nash equilibrium st for t in the order interval (bt] of X, where bt is given by

(5.5). Moreover, the mappings t 7→ bt and t 7→ st are increasing.

Proof. We shall first show that each F t
i (s) is nonempty. For fixed i ∈ I, s ∈ X and

t ∈ T the set us,t
i [Xs,t

i ] is separable by (A), whence it has a countable dense subset



14 S. HEIKKILÄ AND K. REFFETT

B = {us,t
i (σn) | 0 ≤ n < m}, where 1 ≤ m ≤ ∞. It follows from (H2) that denoting

τn = sup{σ0, . . . , σn} and yn = us,t
i (τn), 0 ≤ n < m, one obtains increasing sequences (τn)

in Xs,t
i and (yn) in us,t

i [Xs,t
i ]. In view of (H0), (τn) has a maximum or a limit τ ∈ Xi.

Since Xs,t
i is upwards closed by (H1), then τ belongs to Xs,t

i . Moreover, τ = supn τn by
[7, Proposition 1.1.3]. Denoting y = us,t

i (τ), the hypothesis (H2) and the definitions of τn

and yn imply that

us,t
i (σn) ≤ us,t

i (τn) = yn ≤ y

for each n. Thus B is a subset of (y]. Since (y] is closed, then also us,t
i [Xs,t

i ], as a subset
of the closure of B, is contained in (y], so that y = maxus,t

i [Xs,t
i ], i.e., y ∈ F t

i (s).
Each F t

i (s) is separable by (A). To prove that F t
i (s) is upwards closed, let (τn) be an

increasing sequence of F t
i (s) which converges in Xi. Since F t

i (s) ⊆ Xs,t
i , it follows from

(H1) that τ = limn τn ∈ Xs,t
i . Moreover, us,t

i (τ) ∈ F t
i (s), since the hypothesis (H2) implies

that y = maxus,t
i [Xs,t

i ] = us,t
i (τ1) ≤ us,t

i (sup τ1, τ) = us,t
i (τ).

The hypothesis (H0) implies that the hypothesis (hi0) of Theorem 5.1 holds. The
hypothesis (H2) ensures that each F t

i (s) is a join sublattice, and that each mapping (s, t) 7→
F t

i (s) is increasing upwards. In particular, the mapping F t
i is increasing upwards and its

values are separable and upwards closed join sublattices for all t ∈ T and i ∈ I, whence
the hypothesis (hi4) of Proposition 5.1 holds. If each Xi is a join lattice, then for each
choice of ci ∈ Xi, i ∈ I, and for each t ∈ T the mapping F t = {F t

i }i∈I has by Proposition
5.2 the greatest fixed point st in (bt], where bt is given by (5.5). By definition, st is also
the greatest Nash equilibrium for t in (bt]. Because the mapping t 7→ F t(s) is increasing
for each s ∈ X, the last assertion follows from last conclusion of Proposition 5.2. ut

In the next consequence of Proposition 5.1 we give sufficient conditions for the existence
of such a Nash equilibrium which maximizes utilities of each firm.

Proposition 6.2. Assume that the hypotheses (H0)–(H2) of Proposition 6.1 hold, and

that

(H3) ∪{Xs,t
i | s ∈ X} is bounded from above for all i ∈ I and t ∈ T .

Then the greatest Nash equilibrium st exists for every t ∈ T . Moreover, each st maximizes

each utility ut
i(s) over all Nash equilibria for t if

(H4) the mapping si 7→ ut
i(s

i, si) is increasing for all i ∈ I, si ∈ Xi, t ∈ T .

Proof. The hypotheses (H0)–(H2) imply by the proof of Proposition 6.1 that the hypothe-
ses (hi0) and (hi4) of Proposition 5.1 hold. In view of (H3) there exist bt

i ∈ Xi such that
F t

i [X] ⊆ (bt
i] for all i ∈ I and t ∈ T . This result implies that also the hypothesis (hi5) of

Proposition 5.1 is satisfied. Thus the mapping F t has for each t ∈ T the greatest fixed
point st in (bt], where bt = {bt

i}i∈I . Since F t[X] ⊆ (bt] for each t ∈ T , then each st is the
greatest of all fixed points of F t, and hence the greatest of all Nash equilibria for t. This
proves the first assertion. This result the hypothesis (H4) and [12, Theorem 3 of Chapter
10] implies second assertion. ut
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The following dual result to Proposition 6.1 follows from Proposition 5.3.

Proposition 6.3. Assume that the hypothesis (H0) of Proposition 6.1 and the following

hypotheses are valid.

(H5) Each Xs,t
i is downwards closed.

(H6) If (s, t) ≤ (s, t) in X × T , i ∈ I, σ ∈ Xs,t
i and τ ∈ Xs,t

i , then inf{σ, τ} ∈ Xs,t
i , and

us,t
i (inf{σ, τ}) ≥ us,t

i (τ).

If each Xi is a meet lattice, then for each t ∈ T and for each choice of ci ∈ Xi there exist

the smallest Nash equilibrium st for t in the order interval [at) of X, where at is given by

(5.6). Moreover, the mappings t 7→ at and t 7→ st are increasing.

The next result is a consequence of Theorem 5.1.

Proposition 6.4. Assume that the hypotheses (H0), (H5) and (H6) of Proposition 6.3

hold, and that

(H7) ∪{Xs,t
i | s ∈ X} is bounded from below for all i ∈ I and t ∈ T .

Then the smallest Nash equilibrium st exists for every t ∈ T . Moreover, each st maximizes

each utility ut
i(s) over all Nash equilibria for t if

(H8) the mapping si 7→ ut
i(s

i, si) is decreasing for all i ∈ I, si ∈ Xi, t ∈ T .

The following Lemma offers alternatives to hypotheses (H1) and (H5).

Lemma 6.1. a) The results of Propositions 6.1 and 6.2 hold if the hypothesis (H1) is

replaced by the following hypothesis

(H9) Each us,t
i [Xs,t

i ] is closed upwards, its increasing sequences converge, and for each

y ∈ us,t
i [Xs,t

i ] the set {σ ∈ Xs,t
i | us,t

i (σ) = y} is closed upwards.

b) The results of Propositions 6.3 and 6.4 hold if the hypothesis (H5) is replaced by the

following hypothesis

(H10) Each us,t
i [Xs,t

i ] is closed downwards, its decreasing sequences converge, and for each

y ∈ us,t
i [Xs,t

i ] the set {σ ∈ Xs,t
i | us,t

i (σ) = y} is closed downwards.

Proof. a) Let i ∈ I, t ∈ T and s ∈ X be given. It suffices to show that F t
i (s) is nonempty

and upwards closed. B = {us,t
i (σn) | 0 ≤ n < m}, 1 ≤ m ≤ ∞, be a countable dense subset

of us,t
i [Xs,t

i ], and let (yn) be an increasing sequence of us,t
i [Xs,t

i ] constructed in the proof
of Proposition 6.1. The hypothesis (H9) and [7, Proposition 1.1.3] imply that y = supn yn

exists in Zi and belongs to us,t
i [Xs,t

i ]. In view of the construction of (yn) we see that B is
contained in (y], which is closed, whence us,t

i [Xs,t
i ] ⊆ B ⊆ (y]. Thus y = maxus,t

i [Xs,t
i ], so

that F t
i (s) is nonempty. The last condition of (H9) implies that F t

i (s) is closed upwards.

The proof of b) is similar. ut

In the next Lemma we list sufficient conditions for the validity of some hypotheses used
above.
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Lemma 6.2. a) (A) holds if Xi:s and Zi:s are separable metric spaces.

b) (H2) and (H4) hold if (s, t) 7→ Xs,t
i is join ascending and (s, t) 7→ ut

i(s) is increasing for

each i ∈ I.

c) (H6) and (H8) hold if (s, t) 7→ Xs,t
i is meet ascending and (s, t) 7→ ut

i(s) is decreasing

for each i ∈ I.

d) (A), (H0), (H3) and (H7) hold if Xi is a separable normed space with regular or fully

regular order cone and ∪{Xs,t
i | s ∈ X} is order-bounded for all i ∈ I and t ∈ T .

e) (A) and (H0) hold if Xi is a separable normed space with fully regular order cone and

∪{Xs,t
i | s ∈ X} is norm-bounded for all i ∈ I and t ∈ T .

Remarks 6.1. Each of the spaces given in Remarks 5.1. a) and b) is a separable normed
space with fully regular order cone. In view of Lemma 4.3 all the monotone sequences
of the ordered metric space of vector-valued random variables constructed in Section 4
converge. It can also be shown that this space is separable.

According to Remark 2.1 it follows from the proofs of the fixed point results of Section
5, that if the hypotheses of Proposition 6.1 hold, and if for some t ∈ T strictly monotone
sequences of {maxF t(s) | s ∈ X} are finite, then bt given by (5.5), and the greatest Nash
equilibrium st for t in the order interval (bt] can be computed as follows.

bt is the last element of the finite sequence of iterations
b0 = c, and bn+1 = sup{c, maxF t(bn)}, c = {ci}i∈I as long as bn < bn+1.

st is the last element of the finite sequence of iterations
y0 = bt, and yn+1 = maxF t(yn), as long as yn+1 < yn.

If the hypotheses of Proposition 6.2 hold, and if strictly decreasing sequences of {maxF t(s) |
s ∈ X} are finite for some t ∈ T , the greatest Nash equilibrium st for t is the last element
of iterations:

y0 = bt, and yn+1 = maxF t(yn), as long as yn+1 < yn.

If the hypotheses of Proposition 6.3 hold, and if strictly monotone sequences of {min F t(s) |
s ∈ X} are finite for some t ∈ T , then at given by (5.6) and the smallest Nash equilibrium
st for t in [at) can be calculated as follows.

at is the last element of the finite sequence of iterations
a0 = c, and an+1 = inf{c, minF t(an)}, c ∈ S, as long as an+1 < an.

st is the last element of the finite sequence of iterations
x0 = at, and xn+1 = min F t(xn), as long as xn < xn+1.

If the hypotheses of Proposition 6.4 hold, and if for some t ∈ T strictly increasing
sequences of {min F t(s) | s ∈ X} are finite, the smallest Nash equilibrium st for t is the
last element of iterations:

x0 = at, and xn+1 = min F t(xn), as long as xn < xn+1.
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[2] S. Carl and S. Heikkilä, Fixed point theorems for multifunctions with applications to
discontinuous operator and differential equations, J. Math. Anal. Appl. 297 (2004),
56–69.

[3] A.C. Davis, A characterization of complete lattices, J. Pacific J. of Math 5 (1955),
311–319.
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