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1 Introduction

The celebrated Tarski (1955)1 fixed-point theorem has found numerous applica-

tions in various disciplines, including economics. The theorem states that an in-

creasing transformation of a complete lattice has a complete lattice of fixed points.

This result has been extended to the case of monotone correspondences in the work

of Veinott (1992) and Zhou (1994).2 In the case of Tarski’s original fixed-point the-

orem, the lowest fixed point is the“limit”of the sequence of iterations starting from

the lowest element of the lattice, and the highest fixed point is the “limit” of the

sequence of iterations starting from the highest element of the lattice.3 In his

two recent papers, Olszewski (2021a,b) characterized the elements of the lattice

that are the sharp bounds for sufficiently large iterations on an increasing function

starting from any initial point of its domain.

In this paper, we extend the result of Olszewski (2021b) to monotone upper or-

der hemicontinuous correspondences. This is an important extension as mappings

studied in many economic settings are typically not single-valued. We consider

two important domains for our correspondences: complete lattices and σ-complete

lattices.4 We construct fixed-point lower and upper bounds for the sequences of

iterations of a weakly monotone (resp., strongly monotone) upper order hemicon-

1 See also Knaster and Tarski (1928).
2 In the Veinott-Zhou theorem, monotone means ascending in the strong set order sense. In

Section 2 of this paper, we refer to such correspondences as weakly monotone.
3 For example, see the results on constructive versions of Tarski’s theorem in Cousot and

Cousot (1979) and Echenique (2005). To the best of our knowledge, this paper is the first paper

in the literature that provides constructive, iterative methods of finding fixed points from the

Veinott-Zhou result.
4 In economic applications, the difference between complete lattices and σ-complete lattices

can be important. One such example is a fixed-point problem in spaces of (Borel) measurable

functions over a compact domain A ⊂ Rn, where the space has least and greatest elements, and

is endowed with a pointwise partial ordering. This space is generally only σ-complete. When this

space is given an almost everywhere pointwise partial ordering, its equivalence classes become a

complete lattice (e.g., see Van Zandt (2010), Lemma 5).
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tinuous correspondence F : A ⇒ A that transforms a complete lattice (resp., a

σ-complete lattice) starting from any given initial point a0 ∈ A. More precisely,

we construct fixed points a∗ and a∗ such that sufficiently remote elements ak of any

sequence of iterations (ak)∞k=0 (i.e., such that ak+1 ∈ F (ak) for all k) are contained

between a∗ and a∗.5 As in Olszewski (2021b), the fixed points a∗ and a∗ are sharp

or tight, i.e., b ≤ a∗ and a∗ ≤ b if fixed points b and b are such that remote finite

iterations of F starting at a0 are located between b and b.6

One might argue that extensions of fixed-point theorems from functions to

correspondences have worked pretty well in a variety of settings. In particular,

in our setting one may consider iterations ak+1 = inf F (ak) to obtain the lower

fixed-point bound, and iterations ak+1 = supF (ak) to obtain the upper fixed-

point bound. This is in fact the main idea behind the Veinott-Zhou extension of

Tarski’s theorem. We show, however, that this idea does not deliver the desired

extension. More specifically, it would deliver fixed-point bounds, but they would

not necessarily be tight.

This paper is related to an important and large literature in economics that

applies the Tarski-Kantorovich fixed-point theorem when studying the existence of

equilibria.7 The Tarski-Kantorovich theorem says for an order continuous trans-

formation of a countably chain complete partially ordered set (CCPO) with least

(resp., greatest) elements, the supremum (resp., infimum) of iterations from the

5 See his Proposition 1 for a precise assertion.
6 It is important to note that little is known in the existing literature even about the existence

of fixed points for monotone upper order hemicontinuous correspondences that transform sigma-

complete lattices. Our arguments here verify the existence, as well as provide iterative tight

fixed-point bounds for any initial a0 ∈ A.
7 Some examples of work in economics applying the Tarski-Kantorovich theorem include pa-

pers on supermodular games (e.g., Van Zandt (2010), Kunimoto and Yamashita (2020), Balbus

et al. (2022)), rationalizability in games (e.g. Ok (2004)), models of production chains (Kikuchi

et al., 2018), dynamic programming with unbounded returns (e.g, Kamihigashi (2014), Becker

and Rincón-Zapatero (2021) among many others), the existence of recursive equilibrium in dy-

namic stochastic growth models (e.g., Coleman (1991), Mirman et al. (2008), Datta et al. (2018)),

computing Bewley models in macroeconomics (e.g., Li and Stachurski (2014), Açıkgöz (2018)).
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least (resp., greatest) element of the CCPO will converge in order to the least

(resp., greatest) fixed point.8 One way of understanding the results in Olszewski

(2021b) is that he shows that for order continuous functions that transform σ-

complete lattice, there exists a generalization of the Tarski-Kantorovich theorem,

where from any element of the function’s domain, elements of the fixed-point set

form tight bounds on sufficiently remote iterations.

This paper extends this idea to the case of correspondences. In particular, we

show the Tarski-Kantorovich theorem holds in both: the setting of the original

Veinott-Zhou extension of Tarski’s theorem for complete lattices, where the cor-

respondence is additionally assumed to be upper order hemicontinuous, as well as

in the setting of strongly monotone upper order hemicontinuous correspondences

in σ-complete lattices, where the correspondence is additionally required to have

a least and a greatest element.

To obtain our results, we introduce a new notion of order continuity for mono-

tone correspondences (i.e., “upper order hemicontinuity”). In Section 5 of this pa-

per, we show the result for the upper order hemicontinuous correspondences can

be extended to correspondences with discontinuities but its proof is more involved,

requires transfinite constructions, and the extension is perhaps of less interest for

economists (particularly in applications). The fact that such transfinite construc-

tions are required without order continuity is not surprising given the literature

on constructive characterizations of Tarski’s theorem where transfinite arguments

appear indispensable (e.g., Cousot and Cousot (1979) or Echenique (2005) among

others).

We believe our extensions in this paper are important because most iterations

that we consider in economics (and perhaps in other areas of research) use cor-

8 For example, see Jachymski et al. (2000), Theorem 1, and Dugundji and Granas (1982),

p.15 for a discussion of the Tarski-Kantorovich theorem. See also Balbus et al. (2015), Theorem

1.

4



respondences. For example, players happen to have multiple best responses in

games, including those of strategic complementarities, and consumers or produc-

ers happen to have multiple optimal bundles. Multiplicity appears when payoffs

are not strictly quasi-concave with respect to players’ own actions, and consumers’

or producers’ choices. For example, a small reduction in an oligopolist’s price may

lower its current profits, but a larger reduction, which lowers the current profits by

more, may make other firms exit or deter subsequent entry; or in a contest with

multiple prizes whose values are convex, the increase in the expected value of prize

induced by a small increase in effort may not be worth the cost of this additional

effort, but a larger effort may result in a sufficient increase in prize to compensate

for the effort cost.

To illustrate the usefulness of tight fixed-point bound for increasing correspon-

dences we present an application of our results to a class of social learning models

on networks (studied recently by Cerreia-Vioglio et al. (2023)). Our tools allow

for extending their analysis in the cases in which social learning may not result

in converging to a consensus. In particular, our bounds enable us to estimate nu-

merically the limit amount of disagreement. Despite the fact that our bounds use

double limits, the iterative numerical procedure that we analyze in our example

gave the bounds (up to 5 decimal places) in fewer than 25 iterations.

2 Preliminaries

We start with introducing some basic definitions. A partially ordered set (or poset)

is set A equipped with a partial order ≥. For a′, a ∈ A, we say a′ is strictly higher

than a, and write a′ > a, whenever a′ ≥ a and a′ ̸= a. A poset (A,≥) is a lattice if

for any a, a′ ∈ A there exist the least upper bound of {a, a′} (denoted by a∨ a′ or

sup{a, a′}) and the greatest lower bound of {a, a′} (denoted by a∧a′ or inf{a, a′}).
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A lattice A is complete if there also exist
∨
B := supB ∈ A and

∧
B := inf B ∈ A

for all B ⊆ A. A lattice A is σ-complete, whenever for any countable B ⊆ A,
∨
B

and
∧

B exist in A. A subset B ⊆ A is a sublattice of A if a ∨ a′ and a ∧ a′, as

defined in (A, ≥), belong to B for all a, a′ ∈ B. A sublattice B of a lattice A is a

subcomplete sublattice if for any C ⊆ B the supremum
∨
C and the infimum

∧
C,

as defined in (A,≥), belong to B.

We can compare subsets of A using set relations compatible with (A,≥). Let

2A denote the set of all subsets of A. If (A,≥) is a poset, and B,B′ ∈ 2A\{∅}, we

write B′ ≥S B if for all b′ ∈ B′, b ∈ B, b′ ≥ b. If (A,≥) is a lattice, B and B′ are

two nonempty subsets of A, we say B′ is (Veinott)-strong set order higher than

B, denoted by B′ ≥SSO B, whenever for any b′ ∈ B′ and b ∈ B, b′ ∧ b ∈ B and

b′ ∨ b ∈ B′.

Let F : A ⇒ B be a nonempty-valued correspondence, where (A,≥) and (B,≥)

are posets. We say F is strongly monotone (increasing) whenever a′ > a implies

that F (a′) ≥S F (a). Now, let (B,≥) be a lattice. We say F is weakly monotone

(increasing) whenever a′ > a implies that F (a′) ≥SSO F (a).

A sequence (ak)∞k=0 of elements of A is increasing if ak+1 ≥ ak for all k. It

is strictly increasing if ak+1 > ak for all k. Decreasing and strictly decreasing

sequences can be defined in the obvious specular manner. A monotone sequence

then is either increasing or decreasing. We say that an increasing (resp., decreasing)

sequence (ak)∞k=0 converges to a ∈ A whenever
∨

k≥0 a
k = a (resp.,

∧
k≥0 a

k =

a). That is, when a is the supremum (resp., infimum) of the increasing (resp.,

decreasing) sequence.

We say that a correspondence F is upper order hemicontinuous whenever it

satisfies the following condition: if a monotone sequence (ak)∞k=0 converges to a,

then any monotone sequence (bk)∞k=0 such that bk ∈ F (ak) for all k converges to

some b ∈ F (a). Finally, a function f : A → B is order-preserving (or increasing)
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on A if a ≤ a′ implies f(a) ≤ f(a′) for any a, a′ in A. A function f is upward

order continuous (resp., downward order continuous) if for any increasing (resp.,

decreasing) convergent sequence (ak)∞k=0 with ak ∈ A, we have:

f

(∨
k∈N

ak

)
=
∨
k∈N

f(ak)

(
resp. f

(∧
k∈N

ak

)
=
∧
k∈N

f(ak)

)
.

A function f is order continuous if it is both upward and downward order con-

tinuous. Notice, if f is upward (resp., downward) order continuous, it is order

preserving or increasing.9

3 Iterations on monotone upper order hemicontinuous

correspondences

In this section, we will state and prove our result under the following two alternative

sets of assumptions:

Assumption 1 A is a complete lattice. F : A ⇒ A is weakly monotone and upper

order hemicontinuous. Moreover, for any a ∈ A, F (a) is a subcomplete sublattice

of A.

Assumption 2 A is a σ-complete lattice. F : A ⇒ A is strongly monotone and

upper order hemicontinuous. Moreover, for any a ∈ A, the supremum and the

infimum of F (a) belong to F (a).

Two comments are in order. First, upper order hemicontinuity turns out to be

a natural condition that is easy to check in many economic applications. For exam-

ple, in games of strategic complements (GSCs) where payoff functions are jointly

9 If a function is upward (resp., downward) order continuous, it is also sup (resp., inf) pre-

serving. So our definitions coincide with standard definitions of order continuity (e.g., Dugundji

and Granas (1982), p. 15).
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continuous in action profiles, the resulting best-reply correspondences are upper

order hemicontinuous as a consequence of well-known maximum theorems (e.g.,

Berge’s theorem). Second, there are settings of interest in which Assumption 2

should be applied. Examples include interim formulation of Bayesian supermod-

ular games, Schmeidler’s formulation of large supermodular games or stochastic

supermodular games (see e.g. Van Zandt (2010), Balbus et al. (2019) or Balbus

et al. (2014)).

For any given a0 ∈ A, we will first construct a pair of fixed points (denoted

by a∗ and a∗) of F : A ⇒ A. This construction will take a number of steps

and lemmas. The two fixed points will be, somewhat imprecisely speaking, tight

fixed-point bounds for all iterations of the correspondence F . We will make this

assertion precise in the statement of our result.

Define functions F : A → A and F : A → A as follows

F (a) :=
∧

F (a) and F (a) :=
∨

F (a).

Under Assumption 1, as well as Assumption 2, F and F are both well-defined

selections10 of F . All lemmas below hold true under Assumption 1 as well as

under Assumption 2. We will therefore not explicitly make these assumptions in

the statements of the lemmas. The proofs of the lemmas are relegated to Appendix.

Lemma 1 F (resp.,F ) is downward order continuous (resp., upward order contin-

uous).

Let a1 = F (a0) and a1 = F (a0) be the infimum and the supremum of F (a0);

by induction, for k = 1, 2, . . . let ak+1 and ak+1 be the infimum of F (ak) and

supremum of F (ak), i.e.

ak+1 = F (ak) and ak+1 = F (ak).

10 A selection of a correspondence F : A ⇒ B is any function f : A → B such that f(a) ∈ F (a)

for any a ∈ A.
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It will be convenient to define a0 and a0 as a0. Let aω = lim infk a
k and aω =

lim supk a
k. That is,

aω = lim
k

∧
l≥k

al and aω = lim
k

∨
l≥k

al.

Lemma 2 There exists a ∈ F (aω) such that a ≤ aω Similarly, there exists a ∈

F (aω) such that a ≥ aω.

Under Assumption 1, let aω+1 be the supremum of the elements of F (aω) that

are smaller than aω, and let aω+1 be the infimum of the elements of F (aω) that are

greater than aω; under Assumption 2, let aω+1 be any element of F (aω) smaller

than aω, and let aω+1 be any element of F (aω) greater than aω. That is, under

Assumption 1,

aω+1 =
∨

F (aω) ∩ I(aω) and aω+1 =
∧

F (aω) ∩ J(aω),

with I(a) := {a′ ∈ A : a′ ≤ a} and J(a) := {a′ ∈ A : a′ ≥ a}.

By Lemma 2, F (aω)∩I(aω) ̸= ∅, and the same is true for F (aω)∩J(aω). Hence,

by each of our two assumptions, both aω+1 and aω+1 are well defined elements of

F (aω), respectively of F (aω). Note that we apply here that the condition from

assumption 1 which says that F (a) is a sublattice.

We can now continue our iterations starting from aω and aω. We define the

following sequences (aω+k)∞k=1 and (aω+k)∞k=1 recursively as follows:

aω+k+1 =
∨

F (aω+k) ∩ I(aω+k) and aω+k+1 =
∧

F (aω+k) ∩ J(aω+k),

under Assumption 1; under Assumption 2, aω+k+1 is any element of F (aω+k) such

that aω+k+1 < aω+k, and aω+k+1 is any element of F (aω+k) such that aω+k+1 >

aω+k, unless aω+k (resp., aω+k) is a fixed point, in which case aω+k+1 = aω+k (resp.,

aω+k+1 = aω+k).

This yields the following results:
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Lemma 3 The sequences
(
aω+k

)∞
k=0

and
(
aω+k

)∞
k=0

are both well-defined. More-

over, if any aω+k0 (resp., aω+k0) is a fixed point of F , then the sequence
(
aω+k

)∞
k=k0

(resp.,
(
aω+k

)∞
k=k0

) is constant.

Lemma 4 (i) The sequence (aω+k)∞k=0 is decreasing, and its limit a∗ is a fixed point

of F ; (ii) the sequence (aω+k)∞k=0 is increasing and its limit a∗ is a fixed point of

F .

This completes our construction of fixed points a∗ and a∗. It possibly appears as

a puzzling feature of the construction that ak+1 is defined as the infimum of F (ak),

while aω+k+1 is defined under Assumption 1 as the supremum of F (aω+k)∩I(aω+k).

(A similar question concerns ak+1 and aω+k+1.) For the definition of ak+1 we had

no choice. It had to be the infimum of F (ak) to guarantee a∗ is indeed a lower

bound for the large iterations of F . In turn, if we defined aω+k+1 as the infimum

of F (aω+k), then a∗ would still be a fixed-point lower bound for the iterations of

F , but it could not be the sharp one. This is illustrated by the following example.

Example 1 Recall Example 1 from Olszewski (2021b) in which X is a sublattice

of R2 equipped with the coordinate-by-coordinate ordering that consists of points:

(-1,0), (0,0), (1,0), (0,1), (1,1), (2,1). Olszewski defined a function f : X → X

such that aω = lim inf fk(0, 1) = (0, 0), but f(0, 0) = (−1, 0).

Consider a sublattice A = X ∪ I of R2, where I = {(y, 0) : y ∈ [−4,−1]},

equipped with the coordinate-by-coordinate ordering. Extend function f | X −

{(−1, 0)} to a correspondence F : A ⇒ A by letting F (y, 0) = {(z, 0) : z ∈

[−4,−2]} for y ∈ [−3,−1] and F (y, 0) = (−4, 0)for y ∈ [−4,−3).11 That is,

F = f on X − I, and F on I is illustrated in Figure 1, in which we identified I

with the interval [−4,−1].

11 Note that F (−1, 0) = {(z, 0) : z ∈ [−4,−2]}, while f(−1, 0) = (−1, 0) in Olszewski (2021b).
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Figure 1: The graph correspondence F | I from Example 1.

If we defined aω+1 as inf F (aω) = (−4, 0), then we would obtain a∗ = (−4, 0),

and this would not be a sharp fixed-point bound for the sequence (ak)∞k=0. This

sharp fixed-point bound is a∗ = (−2, 0), and this a∗ is indeed obtained if aω+1 is

defined as
∨

F (aω) ∩ I(aω) = (−2, 0), as we do.

Under Assumption 2, aω+k+1 and aω+k+1 can be defined as the infimum of

F (aω+k), because for strongly monotone F , if aω+k is not a fixed point of F , then

supF (a) ≤ inf F (aω+k) for all a ∈ F (aω+k). So, no element of F (aω+k) can be a

fixed point possibly except inf F (aω+k). Thus, by defining aω+k+1 in the way in

which we do, we can be sure that we will not “jump down” over any fixed point.

We can now state and prove the following key result.

Proposition 1 Both under Assumption 1 and under Assumption 2, the following

statements hold true: (i) An increasing sequence

(∧
l≥k

al

)∞

k=0

converges to aω ≥ a∗,
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and for any sequence (ak)∞k=0 such that ak+1 ∈ F (ak) for all k, we have that∧
l≥k

al ≤ ak. A decreasing sequence

(∨
l≥k

al

)∞

k=0

converges to aω ≤ a∗, and for any

sequence (ak)∞k=0 such that ak+1 ∈ F (ak) for all k, we have that ak ≤
∨
l≥k

al.

(ii) Suppose that b is fixed point of F for which there exist an increasing se-

quence (bk)∞k=1 such that limk b
k ≥ b, and for any sequence (ak)∞k=0 such that

ak+1 ∈ F (ak), we have that bk ≤ ak for all k, then b ≤ a∗. Suppose that b is

fixed point of F for which there exist an decreasing sequence (b
k
)∞k=1 such that

limk b
k ≤ b, and for any sequence (ak)∞k=0 such that ak+1 ∈ F (ak), we have that

ak ≤ b
k
for all k, then b ≥ a∗.

Proof: We will prove the theorem for a∗; the proof for a∗ is analogous. Part (i)

follows directly from the definitions and previous results. We will prove part (ii).

Since bl ≤ al for all l,
∧
l≥k

bl ≤
∧
l≥k

al; and since the sequence (bk)∞k=1 is increasing,

bk =
∧
l≥k

bl, therefore limk b
k ≤ limk

∧
l≥k

al = aω. Thus, b ≤ aω. This completes

the proof if a∗ = aω. If not, then aω is not a fixed point and b < aω. Recall

b ∈ F (b), and aω+1 ∈ F (aω). Under Assumption 1, b ∨ aω+1 ∈ F (aω) because

F (b) ≤SSO F (aω). Since b < aω, and by Lemma 4, aω+1 < aω, we have that

b ∨ aω+1 ≤ aω. This implies that b ∨ aω+1 ∈ F (aω) ∩ I(aω). Since aω+1 is the

greatest element of this set, hence b ∨ aω+1 ≤ aω+1. So b ≤ aω+1. Under Assump-

tion 2, b ≤ aω+1 because b < aω, so the strong monotonicity of F implies b ≤

supF (b) ≤ inf F (aω) ≤ aω+1. We show b ≤ aω+k for any k, and consequently

b ≤ a∗. We have proven this for k = 1; suppose it is the case for some k. The

proof is complete if aω+k is a fixed point, because by Lemma 3, aω+k+1 = aω+k.

If aω+k is not a fixed point, b < aω+k, and b ∨ aω+k+1 ∈ F (aω+k). Moreover,

b∨ aω+k+1 ∈ I(aω+k), hence b∨ aω+k+1 ∈ F (aω+k)∩ I(aω+k). Since aω+k+1 was de-

fined as the greatest element of this set under Assumption 1, b∨ aω+k+1 ≤ aω+k+1,

consequently b ≤ aω+k+1. Under Assumption 2, b ≤ aω+k+1 because b < aω+k,

12



so strong monotonicity of F implies that b ≤ supF (b) ≤ inf F (aω+k) ≤ aω+k+1.

Thus, b ≤ aω+k for any k, and also b ≤ a∗.

Proposition 1 captures formally the intuition that a∗ and a∗ are tight fixed-

point bounds between which sufficiently large iterations of F are located.

Remark. In Proposition 1, we could alternatively require the sequence (bk)∞k=1 to

be decreasing, and the sequence (b
k
)∞k=1 to be increasing. (Recall that we define no

other convergent sequences.) Then, (aω+k)∞k=0 would be such a decreasing sequence

for a∗, and
(
aω+k

)∞
k=0

would be such an increasing sequence for a∗. The hypothesis

of Proposition 1 would still hold true, because bk ≤ ak for all k implies that

b ≤ lim
k

bk ≤ lim inf
k
ak = aω.

Then, the arguments analogous to those from the proof of Proposition 1 yield

b ≤ aω+k for all k, which implies that b ≤ a∗. The proof that b ≥ a∗ is analogous.

Remark. The Tarski-Kantorovich theorem says that if A is a CCPO with a least

element a and a greatest element a, and f : A → A is an order continuous function,

then f has a least fixed point: a∗ = supk{fk(a)} and a greatest fixed point:

a∗ = infk{fk(a)}. A natural way to generalize this principle to a correspondence

F : A ⇒ A is to consider some iterations of its least selection: F (a) = inf F (a) and

its greatest selection F (a) = supF (a) from least and greatest elements of A. If the

least selection exists and is upward order continuous, then F has a least fixed point

a∗ = supk{F k(a)}. Similarly, if the greatest selection exists and is downward order

continuous, then F has a greatest fixed point a∗ = infk{F
k
(a)}. Our Proposition

1 implies that under Assumption 1 or 2 both these fixed points exist.
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4 Application: Social learning on networks

DeGroot’s model, in which agents take weighted averages of the opinions they

observe, is a commonly applied approach to studying social learning on networks.

Obviously, this very specific type of learning cannot well describe all real-life situ-

ations of interest. Cerreia-Vioglio et al. (2023) recently suggested a more general

model, in which an opinion aggregator is a function that satisfies certain axioms. In

their model of an economy of n agents, an opinion profile is represented by a vector

a ∈ [0, 1]n, and learning is represented by an opinion aggregator T : [0, 1]n → [0, 1]n

that is monotone12 with respect to coordinate-by-coordinate ordering on [0, 1]n.

We now illustrate the usefulness of our results by applying them to the setting

studied by Cerreia-Vioglio et al. (2023). A group of agents N = {1, 2, 3} share

their opinions a0 ∈ [0, 1]3. The weights assigned to the other agents are represented

by the matrix:

W =


0.4 0.3 0.3

0.1 0.3 0.6

0.1 0.6 0.3

 .

That is, the entries in row i of the matrix represent the weights assigned by agent

i to the opinions of all agents. The average aggregator T 1(a) is defined, agent by

agent, as the sum of opinions multiplied by their weights. For example, agent 1

assigns weight 0.4 to her own opinion and weight 0.3 to the opinion of each other

agent. So, if a0 = (0.8, 0.6, 0.4), then

a1 = T 1(a0) =


0.4 0.3 0.3

0.1 0.3 0.6

0.1 0.6 0.3

 ·


0.8

0.6

0.4

 =


0.62

0.5

0.56

 .

12 In addition to monotonicity, they impose two other axioms: normalization (T (k, . . . , k) =

(k, . . . , k) for all k ∈ [0, 1]) and translation invariance (T (x1 + k, . . . , xn + k) = T (x1, . . . , xn) +

(k, . . . , k) whenever it makes sense). They all are satisfied in our application.
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The aggregation through weighted averages satisfies the conditions required by

Cerreia-Vioglio et al. (2023). It also satisfies Assumptions 1 and 2 of our paper.

It always achieves limit consensus. For example, if a0 = (0.8, 0.6, 0.4), then it can

be computed numerically that the long run opinion limn→∞ T 1
n(a0) of all agents is

0.54286.

Consider now the aggregation induced by the median. This operator is de-

fined as follows: the opinion of each agent in a vector of opinions a is assigned a

probability equal to the agent’s weight. This determines a probability distribution

over opinions. T 2(a) is defined, agent by agent, as the median of this distribution.

For example, a1 = T 2(a0) = (0.6, 0.4, 0.6) for a0 = (0.8, 0.6, 0.4). The median

aggregator also satisfies the conditions required by of Cerreia-Vioglio et al. (2023).

Actually, both weighted averages and medians were used as examples in their pa-

per. Except the non-generic matrices, such that the sum of a proper subset of

entries in some row is equal to 0.5, the median is always unique and the median

aggregator is continuous and satisfies our Assumptions 1 and 2. For the remaining

non-generic matrices, the median aggregator is upper order hemicontinuous and

satisfies our Assumption 1.13

When a0 = (0.8, 0.6, 0.4), ak = (0.6, 0.4, 0.6) for odd k and ak = (0.6, 0.6, 0.4)

for even k. Thus,

lim inf
k=∞

ak = (0.6, 0.4, 0.4) and lim sup
k=∞

ak = (0.6, 0.6, 0.6).

Despite the fact that no limit consensus is reached, by looking at lim inf and lim sup

we can say that the limit disagreement is only of size 0.2, that is, it is only a half

of the initial disagreement.

Note that while lim supk=∞ ak is a fixed point of the aggregator T 2 (namely

a∗) lim infk=∞ ak is not a fixed point; indeed, T 2(0.6, 0.4, 0.4) = (0.4, 0.4, 0.4).

13For all a, T 2(a) is a product of intervals.
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Therefore applying the second rounds of iterations of T 2 to lim inf is necessary

(not necessary for lim sup) if the objective is to find the fixed-point bound (namely

a∗). The fixed-point bound will be useful when a modeler believes that a stable

outcome should be reached and allows for a broader class of adaptive dynamics.14

Up to now most of the aggregators considered in this application were func-

tions. However, in some settings correspondence aggregators seem more appro-

priate. Suppose, for example, that a modeler only wants to assume that agents

somehow average opinions in the process of adaptive learning. She may then use

T that takes values between the weighted average and the median. More precisely,

let

T (a) = {y : T 1(a) ∧ T 2(a) ≤ y ≤ T 1(a) ∨ T 2(a)};

for example,

T (0.8, 0.6, 0.4) = [0.6, 0.62] × [0.4, 0.5] × [0.56, 0.6].

This correspondence T is weakly monotone, because so are T 1 and T 2. The

values of T are products of intervals. And T is upper order hemicontinuous,

because so are T 1 and T 2. So our Assumption 1 is satisfied.15 Finally, one can

estimate the size of the limit disagreement by computing numerically that

a∗ = lim inf
k=∞

ak = (0.4, 0.4, 0.4) and lim sup
k=∞

ak = (0.6, 0.6, 0.6) = a∗.

The above examples suggests that the two tight fixed-point bounds represent

the social consensus. The following example shows it is not always the case. To

14 An aggregator that takes as input only the most recent opinions generate an extreme form of

adaptive learning. In some settings, it makes sense to apply an aggregator T to the minimum of

opinions of each agent in two (or more) previous periods. This results, for the median aggregator,

in the convergence to the consensus (0.4, 0.4, 0.4). We postpone more detailed analysis of other

forms of adaptive learning for future research. However, it seems that our fixed points are the

right bounds for richer classes of adaptive learning processes.
15 Note also that T (k, . . . , k) = {(k, . . . , k)} for all k ∈ [0, 1]. So, normalization is satisfied,

and so is the version of translation invariance for correspondences.

16



see that, let:

W =


0.8 0.1 0.1

0.2 0.1 0.7

0.2 0.7 0.1

 ,

and let the initial profile be a0 = (0.8, 0.4, 0.6). Suppose now that each agent

ignores the extremal 20% of the opinions and so updates its opinion somewhere in

the interval between 0.2 and 0.8 percentile of the opinion distribution.

Computing the upper iterations, i.e. iterating on the 0.8 percentile aggregator,

we immediately obtain that at = (0.8, 0.6, 0.6) for any t ≥ 1 and, although no

consensus is reached, a profile (0.8, 0.6, 0.6) is the upper fixed-point bound of our

learning process.

For the lower iterations, we obtain: at = (0.6, 0.6, 0.4) for odd t and at =

(0.6, 0.4, 0.6) for even t. The learning cycles, but

lim inf
k=∞

ak = (0.6, 0.4, 0.4).

Now:

T (lim inf
k=∞

ak) = [0.4, 0.6] × [0.4, 0.6] × [0.4, 0.6].

Interestingly, both: the least element of T (lim infk=∞ ak), namely (0.4, 0.4, 0.4), as

well as its greatest element, namely (0.6, 0.4, 0.4), are fixed points of T . But the

tight lower fixed-point bound is (0.6, 0.4, 0.4). That is in line with our construction

on pages 9-10. The disagreement between both sharp fixed-point bounds is hence

0.2.

5 Iterations on discontinuous correspondences

There are two possible extensions of Proposition 1. First, one may ask if there exist

tight fixed-point bound for sequences of finite iterations starting from an arbitrary

17



point of a lattice. The answer to this question is negative, even for functions, as

the following example shows.

Example 2 Let A = [0, 1)∪{2−1/n : n = 1, 2, . . .}∪{2, 3} with the lattice structure

inherited from the reals. Let f : A → A be given by f(a) = a for a from [0, 1),

f(a) = 2 − 1/(n + 1) for a = 2 − 1/n, and f(a) = 3 for a = 2, 3. Points a < 1

and a = 3 are the fixed points of function f . For a0 = 1, the sequence of finite

iterations an = fn(a0) = 2− 1/(n+ 1) is increasing and converges to a = 2. Thus,

a = 3 is the tight fixed-point upper bound for this sequence of iterations, and any

a < 1 is a fixed-point lower bound. This implies that the tight fixed-point lower

bound does not exist.

Secondly, one may wonder whether our results can be extended to discontin-

uous weakly monotone correspondences. In fact Proposition 1 can be extended

in this way, but the cost of relaxing our continuity condition is that we must in-

troduce transfinite iterations. In addition, we must restrict attention to iterating

correspondences that transform complete (not all sigma-complete) lattice A. More

precisely, the following result can be obtained by minimally modifying the proof

from Olszewski (2021a).

Let α > |A|, where |A| stands for the cardinality of A, be a cardinal number.

For every a0 = a0 = a0 ∈ A, and every weakly monotone correspondence F : A ⇒

A, say that (aβ)β<α is a sequence of transfinite iterations of F if:

aβ ∈ F (aβ−1) if β has a predecessor β − 1;

and

∨
γ<β

∧
γ≤δ<β

aδ ≤ aβ ≤
∧
γ<β

∨
γ≤δ<β

aδ if β is a limit ordinal.

In addition, distinguish two special sequences of transfinite iterations
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aβ =:


inf F (aβ−1) if β has a predecessor β − 1∧

γ<β

∨
γ≤δ<β

aδ if β is a limit ordinal.
(1)

and

aβ =:


supF (aβ−1) if β has a predecessor β − 1∧

γ<β

∨
γ≤δ<β

aδ if β is a limit ordinal.
(2)

Proposition 2 Suppose that (A,≤) is a complete lattice, and F : A ⇒ A is a

weakly monotone correspondence such that F (a) has the smallest and the greatest

element for all a ∈ A. Let α > |A| be a regular cardinal number.16 Then, for

any a0 = a0 ∈ A, there exist β, β < α such that aβ = aβ for all β ≤ β < α, and

aβ = aβ for all β ≤ β < α. In particular, aβ and aβ are fixed points of F .

Moreover, aβ is the greatest fixed point a of F with the property that a ≤ aβ for

sufficiently large β < α and for all sequences of transfinite iterations (aβ)β<α, and

aβ and the smallest fixed point a of F with the property that aβ ≤ a for sufficiently

large β < α and for all sequences of transfinite iterations (aβ)β<α.

It is possible to obtain a somewhat stronger result than Proposition 2, which

requires a somewhat more involved proof. However, since transfinite sequences are

unlikely to be of interest for economists, we will not present and discuss this result

in this paper.

16 A regular cardinal number α is defined by the following property: No set of cardinality α

can be represented as the union of a family of subsets such that each subset from the family has

a cardinality smaller than α, and the family itself is of a cardinality smaller than α.
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6 Appendix

Proof of Lemma 1. Since F is weakly increasing, so are F and F . Indeed, if

a′ < a′′ then F (a′) ∧ F (a′′) ∈ F (a′). As a result,

F (a′) ≤ F (a′) ∧ F (a′′).

Hence F (a′) = F (a′) ∧ F (a′′) ≤ F (a′′). Similarly, we show that F is increasing.

We prove the upward continuity of F . The proof is the same under Assump-

tion 1 and under Assumption 2. Let (ak)∞k=1 be an increasing sequence in A such

that a =
∨

k∈N a
k. Let bk := F (ak). Then bk ∈ F (ak) for all k ∈ N, and (bk)∞k=1 is

increasing. Let b :=
∨

bk. Since bk belongs to F (ak) and the sequence (bk)∞k=1 is

increasing, b belongs to F (a) by upper hemicontinuity of F . Hence, F (a) ≤ b. On

the other hand, F (a) = F (
∨

k∈N a
k) ≥ bk for any k because F is increasing. Hence

b ≤ F (a). Together with F (a) ≤ b, we have b = F (a), and hence the upward

continuity. We omit a similar proof that F is downward continuous.

Proof of Lemma 2. We will prove the lemma for aω; the proof for aω is anal-

ogous. The sequence

(∧
l≥k

al

)∞

k=0

is increasing, and aω is its supremum. Let

bk = F

(∧
l≥k

al

)
. By Lemma 1, F is an increasing, upward continuous function,

hence (bk)∞k=1 is increasing as well. In addition,

a :=
∨
k∈N

bk = F (aω) ∈ F (aω).

To finish the proof, we must show that a ≤ aω. Since
∧
l≥k

al ≤ al for all l ≥ k, we

have that bk ≤ al+1 for all l ≥ k by the monotonicity of F and the definition of

al+1 and bk. So, bk ≤
∧

l≥k+1

al ≤ aω, which gives that a = limk b
k ≤ aω.
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Proof of Lemma 3. We will show the hypothesis for the sequence
(
aω+k

)∞
k=0

; the

proof for the sequence
(
aω+k

)∞
k=0

is analogous. That is, we will show by induction

that aω+k+1 is well-defined for any k ≥ 0, and if aω+k is a fixed point, then aω+k+1 =

aω+k.

For k = 0, this holds true by Lemma 2. First, suppose that aω+k is a fixed

point of F for some k > 0. Then aω+k ∈ F (aω+k) ∩ I(aω+k) ̸= ∅, so aω+k+1 is

well-defined by Assumption 1. In addition, aω+k must be
∨
F (aω+k) ∩ I(aω+k).

Hence aω+k+1 = aω+k by the definition of aω+k+1. Under Assumption 2, aω+k+1 is

defined as aω+k.

Suppose now that aω+k is not a fixed point of F . By induction hypothesis

aω+k−1 is neither a fixed point of F , because then aω+k = aω+k−1 would also be a

fixed point. Hence aω+k−1 > aω+k. By Assumption 1, F (aω+k) ≤SSO F (aω+k−1).

Take any a′ ∈ F (aω+k). Such an a′ exists because F is non-empty valued. Since

aω+k ∈ F (aω+k−1), it must be that a′ ∧ aω+k ∈ F (aω+k) and obviously a′ ∧ aω+k ∈

I(aω+k). As a result F (aω+k) ∩ I(aω+k) ̸= ∅. Thus, aω+k+1 is well-defined. Under

Assumption 2, aω+k+1 is defined as an arbitrary element of F (aω+k) smaller than

aω+k. Such an element exists because F is non-empty valued and strongly mono-

tone. So, aω+k+1 is well-defined.

Proof of Lemma 4. We will prove this lemma for a∗; the proof for a∗ is analogous.

By construction,
(
aω+k

)∞
k=0

is a decreasing sequence. Let a∗ be its limit. Since

aω+k+1 ∈ F (aω+k) for all k, by taking a limit as k → ∞ and applying the upper

hemicontinuity of F we obtain a∗ ∈ F (a∗).
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